1
|
Teng M, Luo X, Qin R, Feng J, Zhang P, Wang P, Zhang X, Wang X. Biocompatible and Biodegradable 3D Graphene/Collagen Fiber Hybrids for High-Performance Conductive Networks and Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34213-34228. [PMID: 38885612 DOI: 10.1021/acsami.4c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Polymer-based flexible conductive materials are crucial for wearable electronics, electronic skin, and other smart materials. However, their development and commercial applications have been hampered by the lack of strain tolerance in the conductive network, poor bonding with polymers, discomfort during wear, and a lack of biocompatibility. This study utilized oil-tanned leather with a natural network structure, high toughness, and high tensile deformation recovery as a structural template. A graphene (Gr) conductive network was then constructed on the collagen network of the leather, with coordination cross-linking between Gr and collagen fibers through aluminum ions (Al3+). A new flexible conductive material (Al-GL) was then constructed. Molecular dynamics simulations and experimental validation revealed the existence of physical adsorption, hydrogen bonding adsorption, and ligand bonding between Al3+, Gr, and collagen fibers. Although we established that the binding sites between Al3+ and collagen fibers were primarily on carboxyl groups (-COOH), the mechanism of chemical bonding between Gr and collagen fibers remains unclear. The Al-GL composite exhibited a high shrinkage temperature (67.4 °C) and low electrical resistance (16.1 kΩ·sq-1), as well as good softness (9.33 mN), biocompatibility, biodegradability (<60 h), and air and moisture permeability. Furthermore, the incorporation of Al3+ resulted in a heightened Gr binding strength on Al-GL, and the resistance remained comparable following 1 h of water washing. The Al-GL sensor prepared by WPU encapsulation not only demonstrated highly sensitive responses to diverse motion signals of the human body but also retained a certain degree of response to external mechanical effects underwater. Additionally, the Al-GL-based triboelectric nanogenerator (Al-GL TENG) exhibited distinct response signals to different materials. The Al-GL prepared by the one-pot method proposed in this study offers a novel approach to combining functional nanofillers and substrate materials, providing a theoretical foundation for collagen fiber-based flexible conductive materials.
Collapse
Affiliation(s)
- Ming Teng
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xiaomin Luo
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Rong Qin
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Jianyan Feng
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Peng Zhang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Peng Wang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xiaomeng Zhang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xuechuan Wang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| |
Collapse
|
2
|
Zhang S, Li L, Liu Y, Li Q. Nanocellulose/carbon nanotube/manganese dioxide composite electrodes with high mass loadings for flexible supercapacitors. Carbohydr Polym 2024; 326:121661. [PMID: 38142085 DOI: 10.1016/j.carbpol.2023.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023]
Abstract
The increasing commercialization of flexible electronic products has sparked a rising interest in flexible wearable energy storage devices. Supercapacitors are positioned as one of the systems with the most potential due to their distinctive advantages: high power density, rapid charge and discharge rates, and long cycle life. However, electrode materials face challenges in providing excellent mechanical strength while ensuring sufficient energy density. This study presents a method for constructing a flexible composite electrode material with high capacitance and mechanical performance by electrochemically depositing high-quality manganese dioxide (MnO2) onto the surface of a nanocellulose (CNF) and carbon nanotube (CNT) conductive film. In this electrode material, the CNF/CNT composite film serves as a flexible conductive substrate, offering excellent mechanical properties (modulus of 3.3 GPa), conductivity (55 S/cm), and numerous active sites. Furthermore, at the interface between MnO2 and the CNF/CNT substrate, C-O-Mn bonds are formed, promoting a tight connection between the composite materials. The assembled symmetric flexible supercapacitor (FSC) demonstrates impressive performance, with an areal specific capacitance of 934 mF/cm2, an energy density of 43.10 Wh/kg, a power density of 166.67 W/kg and a long cycle life (85 % Capacitance retention after 10,000 cycles), suggesting that they hold promise for FSC applications.
Collapse
Affiliation(s)
- Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China.
| | - Lei Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China
| | - Yali Liu
- Xinjiang Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Qinglu Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xian 710021, China
| |
Collapse
|
3
|
Xu Z, Chen Y, Meng Q, Yang A, Zhang H, Zhang G. N/P co-doped MXene hollow microcapsules by surfactants assisted hydrothermal-freeze drying for adjustable permeability. NANOTECHNOLOGY 2024; 35:125604. [PMID: 38100838 DOI: 10.1088/1361-6528/ad1648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The assembly of MXene materials into microcapsules has drawn great attentions due to their unique properties. However, rational design and synthesis of MXene-based microcapsules with specific nanostructures at the molecular scale remains challenging. Herein, we report a strategy to synthesize N/P co-doped MXene hollow flower-like microcapsules with adjustable permeability via dual surfactants assisted hydrothermal-freeze drying method. In contrast to anionic surfactants, cationic surfactants exhibited effective electrostatic interactions with MXene nanosheets during the hydrothermal process. Manipulation of dual surfactants in hydrothermal process realized N and P co-doping of MXene to improve flexibility and promoted the generation of abundant internal cavities in flower-like microcapsules. Based on the unique microstructure, the prepared hollow flower-like microcapsules showed excellent performance, stability and reusability in size-selective release of small organic molecules. Moreover, the release rate can be controlled by turning the oxidation state and type of MXene. The strategy delineates promising prospects for the design of MXene-based microcapsules with specific structures.
Collapse
Affiliation(s)
- Zehai Xu
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yancheng Chen
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qin Meng
- College of Chemical and Biological Engineering, State Key Laboratory of Chemical Engineering, Zhejiang University, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Asan Yang
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Honghua Zhang
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, Institute of Oceanic and Environmental Chemical Engineering, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
4
|
Xu Z, Zhang Y, Xu Y, Meng Q, Shen C, Xu L, Zhang G. Construction of anti-swelling circuit board-like activated graphene oxide lamellar nanofilms with functionalized heterostructured 2D nanosheets. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
Wu H, Wang L, Xu W, Xu Z, Zhang G. Preparation of a CAB-GO/PES Mixed Matrix Ultrafiltration Membrane and Its Antifouling Performance. MEMBRANES 2023; 13:241. [PMID: 36837744 PMCID: PMC9961617 DOI: 10.3390/membranes13020241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Serious membrane fouling has limited the development of ultrafiltration membrane technology for water purification. Synthesis of an ultrafiltration membrane with prominent anti-fouling ability is of vital importance. In this study, CAB-GO composite nanosheets were prepared by grafting graphene oxide (GO) with a zwitterionic material cocamidopropyl betaine (CAB) with strong antifouling properties. Anti-fouling CAB-GO/PES mixed matrix ultrafiltration membrane (CGM) was prepared by the phase inversion method with polyethersulfone (PES). Due to its electrostatic interaction, the interlayer distance between CAB-GO nanosheets was increased, and the dispersibility of GO was improved to large extent, thereby effectively avoiding the phenomenon of GO agglomeration in organic solvents. Based on the improvement of the surface porosity and surface hydrophilicity of the CAB-GO/PES mixed matrix membrane, the pure water flux of CGM-1.0 can reach 461 L/(m2·h), which was 2.5 times higher than that of the original PES membrane, and the rejection rates toward BSA and HA were above 96%. Moreover, when the content of CAB-GO was 0.1 wt%, the prepared CAB-GO/PES membrane exhibited very high BSA (99.1%) and HA (98.1%) rejection during long-term operation, indicating excellent anti-fouling ability.
Collapse
Affiliation(s)
- Haiyan Wu
- Center for Membrane and Water Science &Technology, State Key Laboratory of Green Chemical Synthesis Technology, Institute of Oceanic and Environmental Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ling Wang
- Hangzhou Special Equipments Inspection and Research Institute, Hangzhou 310005, China
| | - Wentao Xu
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Zehai Xu
- Center for Membrane and Water Science &Technology, State Key Laboratory of Green Chemical Synthesis Technology, Institute of Oceanic and Environmental Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoliang Zhang
- Center for Membrane and Water Science &Technology, State Key Laboratory of Green Chemical Synthesis Technology, Institute of Oceanic and Environmental Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
6
|
Deng S, Tie Z, Yue F, Cao H, Yao M, Niu Z. Rational Design of ZnMn 2 O 4 Quantum Dots in a Carbon Framework for Durable Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl 2022; 61:e202115877. [PMID: 34989074 DOI: 10.1002/anie.202115877] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Indexed: 11/07/2022]
Abstract
Manganese oxides are promising cathode materials for aqueous zinc-ion batteries (ZIBs) due to their high energy density and low cost. However, in their discharging processes, the Jahn-Teller effect and Mn3+ disproportionation often lead to irreversible structural transformation and Mn2+ dissolution, deteriorating the cycling stability of ZIBs. Herein, ZnMn2 O4 quantum dots (ZMO QDs) were introduced into a porous carbon framework by in-situ electrochemically inducing Mn-MIL-100-derived Mn3 O4 quantum dots and the carbon composite. In such ZMO QDs and carbon composite, the quantum dot structure endows ZnMn2 O4 with a shorter ion diffusion route and more active sites for Zn2+ . The conductive carbon framework is beneficial to the fast transport of electrons. Furthermore, at the interface between the ZMO QDs and the carbon matrix, the Mn-O-C bonds are formed. They can effectively suppress the Jahn-Teller effect and manganese dissolution of discharge products. Therefore, Zn/ZMO QD@C batteries display remarkably enhanced electrochemical performance.
Collapse
Affiliation(s)
- Shenzhen Deng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiwei Tie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Fang Yue
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hongmei Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Minjie Yao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
7
|
Deng S, Tie Z, Yue F, Cao H, Yao M, Niu Z. Rational Design of ZnMn2O4 Quantum Dots in Carbon Framework for Durable Aqueous Zinc‐Ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Zhiwei Tie
- Nankai University College of Chemistry CHINA
| | - Fang Yue
- Nankai University College of Chemistry CHINA
| | - Hongmei Cao
- Nankai University College of Chemistry CHINA
| | - Minjie Yao
- Nankai University College of Chemistry CHINA
| | - Zhiqiang Niu
- Nankai University No.94, Weijin Road 300071 Tianjin CHINA
| |
Collapse
|