1
|
Mason EC, Menon S, Schneider BR, Gaskill CF, Dawson MM, Moore CM, Armstrong LC, Cho O, Richmond BW, Kropski JA, West JD, Geraghty P, Gomperts BN, Ess KC, Gally F, Majka SM. Activation of mTOR signaling in adult lung microvascular progenitor cells accelerates lung aging. J Clin Invest 2023; 133:e171430. [PMID: 37874650 PMCID: PMC10721153 DOI: 10.1172/jci171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
Reactivation and dysregulation of the mTOR signaling pathway are a hallmark of aging and chronic lung disease; however, the impact on microvascular progenitor cells (MVPCs), capillary angiostasis, and tissue homeostasis is unknown. While the existence of an adult lung vascular progenitor has long been hypothesized, these studies show that Abcg2 enriches for a population of angiogenic tissue-resident MVPCs present in both adult mouse and human lungs using functional, lineage, and transcriptomic analyses. These studies link human and mouse MVPC-specific mTORC1 activation to decreased stemness, angiogenic potential, and disruption of p53 and Wnt pathways, with consequent loss of alveolar-capillary structure and function. Following mTOR activation, these MVPCs adapt a unique transcriptome signature and emerge as a venous subpopulation in the angiodiverse microvascular endothelial subclusters. Thus, our findings support a significant role for mTOR in the maintenance of MVPC function and microvascular niche homeostasis as well as a cell-based mechanism driving loss of tissue structure underlying lung aging and the development of emphysema.
Collapse
Affiliation(s)
- Emma C. Mason
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Swapna Menon
- Pulmonary Vascular Research Institute Kochi and AnalyzeDat Consulting Services, Kerala, India
| | - Benjamin R. Schneider
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Christa F. Gaskill
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maggie M. Dawson
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Camille M. Moore
- Department of Immunology and Genomic Medicine, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Craig Armstrong
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Okyong Cho
- Genomics and Microarray Core, University of Colorado Cancer Center, Anschutz Medical Center, Aurora, Colorado, USA
| | - Bradley W. Richmond
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center and Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center and Department of Veterans Affairs, Nashville, Tennessee, USA
| | - James D. West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center and Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Brigitte N. Gomperts
- Translational Research, UCLA Broad Stem Cell Research Center; Pediatrics Division of Pulmonary Medicine, University of California, Los Angeles, California, USA
| | - Kevin C. Ess
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fabienne Gally
- Department of Immunology and Genomic Medicine, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M. Majka
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
2
|
Pietrobon A, Stanford WL. Tuberous Sclerosis Complex Kidney Lesion Pathogenesis: A Developmental Perspective. J Am Soc Nephrol 2023; 34:1135-1149. [PMID: 37060140 PMCID: PMC10356159 DOI: 10.1681/asn.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
The phenotypic diversity of tuberous sclerosis complex (TSC) kidney pathology is enigmatic. Despite a well-established monogenic etiology, an incomplete understanding of lesion pathogenesis persists. In this review, we explore the question: How do TSC kidney lesions arise? We appraise literature findings in the context of mutational timing and cell-of-origin. Through a developmental lens, we integrate the critical results from clinical studies, human specimens, and genetic animal models. We also review novel insights gleaned from emerging organoid and single-cell sequencing technologies. We present a new model of pathogenesis which posits a phenotypic continuum, whereby lesions arise by mutagenesis during development from variably timed second-hit events. This model can serve as a conceptual framework for testing hypotheses of TSC lesion pathogenesis, both in the kidney and in other affected tissues.
Collapse
Affiliation(s)
- Adam Pietrobon
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Li Z, Zhang X, Zhu W, Zhang C, Sadak K, Halberstam AA, Brown JR, Perry CJ, Bunn A, Braun DA, Adeniran A, Lee S, Wang A, Perry RJ. FGF-21 Conducts a Liver-Brain-Kidney Axis to Promote Renal Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536558. [PMID: 37090652 PMCID: PMC10120688 DOI: 10.1101/2023.04.12.536558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metabolic homeostasis is one of the most exquisitely tuned systems in mammalian physiology. Metabolic homeostasis requires multiple redundant systems to cooperate to maintain blood glucose concentrations in a narrow range, despite a multitude of physiological and pathophysiological pressures. Cancer is one of the canonical pathophysiological settings in which metabolism plays a key role. In this study, we utilized REnal Gluconeogenesis Analytical Leads (REGAL), a liquid chromatography-mass spectrometry/mass spectrometry-based stable isotope tracer method that we developed to show that in conditions of metabolic stress, the fasting hepatokine fibroblast growth factor-21 (FGF-21)1,2 coordinates a liver-brain-kidney axis to promote renal gluconeogenesis. FGF-21 promotes renal gluconeogenesis by enhancing β2 adrenergic receptor (Adrb2)-driven, adipose triglyceride lipase (ATGL)-mediated intrarenal lipolysis. Further, we show that this liver-brain-kidney axis promotes gluconeogenesis in the renal parenchyma in mice and humans with renal cell carcinoma (RCC). This increased gluconeogenesis is, in turn, associated with accelerated RCC progression. We identify Adrb2 blockade as a new class of therapy for RCC in mice, with confirmatory data in human patients. In summary, these data reveal a new metabolic function of FGF-21 in driving renal gluconeogenesis, and demonstrate that inhibition of renal gluconeogenesis by FGF-21 antagonism deserves attention as a new therapeutic approach to RCC.
Collapse
Affiliation(s)
- Zongyu Li
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Xinyi Zhang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Wanling Zhu
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Cuiling Zhang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Immunobiology, Yale University School of Medicine
| | - Katherine Sadak
- Department of Internal Medicine, Yale University School of Medicine
| | - Alexandra A Halberstam
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
| | - Jason R Brown
- Department of Internal Medicine, Division of Medical Oncology, University Hospitals Seidman Cancer Center
- Case Western Reserve University
| | - Curtis J Perry
- Department of Internal Medicine, Yale University School of Medicine
| | - Azia Bunn
- Department of Internal Medicine, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| | - David A Braun
- Department of Internal Medicine, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| | | | - Sangwon Lee
- Department of Pharmacology, Yale University School of Medicine
| | - Andrew Wang
- Department of Internal Medicine, Yale University School of Medicine
- Department of Immunobiology, Yale University School of Medicine
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine
- Department of Cellular & Molecular Physiology, Yale University School of Medicine
- Yale Cancer Center, Yale University School of Medicine
| |
Collapse
|
4
|
Bissler JJ, Batchelor D, Kingswood JC. Progress in Tuberous Sclerosis Complex Renal Disease. Crit Rev Oncog 2023; 27:35-49. [PMID: 36734871 DOI: 10.1615/critrevoncog.2022042857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that affects both fetal development and postnatal tissue growth, resulting in altered brain structures and a tumor predisposition syndrome. Although every organ system is affected by the disease, kidney involvement is a leading cause of death in adults with TSC. Over the past decade, significant progress has been made in understanding the renal disease. This review focuses on the cystic and solid renal lesions in TSC, including their pathobiology and treatment.
Collapse
Affiliation(s)
- John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105; Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN 38105; Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Dinah Batchelor
- Johns Hopkins All Children's Hospital, St. Petersburg, FL 33702
| | - J Christopher Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St. Georges University of London, London, United Kingdom
| |
Collapse
|
5
|
Renal organoid modeling of tuberous sclerosis complex reveals lesion features arise from diverse developmental processes. Cell Rep 2022; 40:111048. [PMID: 35793620 DOI: 10.1016/j.celrep.2022.111048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a multisystem tumor-forming disorder caused by loss of TSC1 or TSC2. Renal manifestations predominately include cysts and angiomyolipomas. Despite a well-described monogenic etiology, the cellular pathogenesis remains elusive. We report a genetically engineered human renal organoid model that recapitulates pleiotropic features of TSC kidney disease in vitro and upon orthotopic xenotransplantation. Time course single-cell RNA sequencing demonstrates that loss of TSC1 or TSC2 affects multiple developmental processes in the renal epithelial, stromal, and glial compartments. First, TSC1 or TSC2 ablation induces transitional upregulation of stromal-associated genes. Second, epithelial cells in the TSC1-/- and TSC2-/- organoids exhibit a rapamycin-insensitive epithelial-to-mesenchymal transition. Third, a melanocytic population forms exclusively in TSC1-/- and TSC2-/- organoids, branching from MITF+ Schwann cell precursors. Together, these results illustrate the pleiotropic developmental consequences of biallelic inactivation of TSC1 or TSC2 and offer insight into TSC kidney lesion pathogenesis.
Collapse
|