1
|
Skoufou-Papoutsaki N, Adler S, Mehmed S, Tume C, Olpe C, Morrissey E, Kemp R, Girard AC, Moutin EB, Chilamakuri CSR, Miller JL, Lindskog C, Werle F, Marks K, Perrone F, Zilbauer M, Tourigny DS, Winton DJ. Haploinsufficient phenotypes promote selection of PTEN and ARID1A-deficient clones in human colon. EMBO Rep 2025; 26:1269-1289. [PMID: 39920335 PMCID: PMC11893880 DOI: 10.1038/s44319-025-00373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Cancer driver mutations are defined by their high prevalence in cancers and presumed rarity in normal tissues. However, recent studies show that positive selection in normal epithelia can increase the prevalence of some cancer drivers. To determine their true cancer-driving potential, it is essential to evaluate how frequent these mutations are in normal tissues and what are their phenotypes. Here, we explore the bioavailability of somatic variants by quantifying age-related mutational burdens in normal human colonic epithelium using immunodetection in FFPE samples (N = 181 patients). Positive selection of variants of tumour suppressor genes PTEN and ARID1A associates with monoallelic gene loss as confirmed by CRISPR/Cas9 mutagenesis and changes in their downstream effectors. Comparison of the mutational burden in normal tissue and colorectal cancers allows quantification of cancer driver potency based on relative representation. Additionally, immune exclusion, a cancer hallmark feature, is observed within ARID1A-deficient clones in histologically normal tissue. The behaviour resulting from haploinsufficiency of PTEN and ARID1A demonstrates how somatic mosaicism of tumour suppressors arises and can predispose to cancer initiation.
Collapse
Affiliation(s)
- Nefeli Skoufou-Papoutsaki
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Sam Adler
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Shenay Mehmed
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Claire Tume
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Cora Olpe
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - Richard Kemp
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Anne-Claire Girard
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Elisa B Moutin
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | | | - Jodi L Miller
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine Research Program, Uppsala University, Uppsala, 751 85, Sweden
| | - Fabian Werle
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Kate Marks
- University of Leeds School of Medicine, Leeds Institute of Medical Research, Pathology and Data Analytics, University of Leeds, Leeds, LS2 9JT, UK
| | - Francesca Perrone
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Matthias Zilbauer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | - David S Tourigny
- School of Mathematics, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Douglas J Winton
- CRUK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
2
|
Sadien ID, Adler S, Mehmed S, Bailey S, Sawle A, Couturier DL, Eldridge M, Adams DJ, Kemp R, Lourenço FC, Winton DJ. Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis. Nature 2024; 634:1196-1203. [PMID: 39478206 PMCID: PMC11525183 DOI: 10.1038/s41586-024-08053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis1,2. APC-mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants3-5. Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process6,7. Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct Apc mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic Kras mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones.
Collapse
Affiliation(s)
- Iannish D Sadien
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sam Adler
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Shenay Mehmed
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sasha Bailey
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | | | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Filipe C Lourenço
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
3
|
Liu D, Li C, Deng Z, Luo N, Li W, Hu W, Li X, Qiu Z, Chen J, Peng J. Multi-omics analysis reveals the landscape of tumor microenvironments in left-sided and right-sided colon cancer. Front Med (Lausanne) 2024; 11:1403171. [PMID: 39267963 PMCID: PMC11391487 DOI: 10.3389/fmed.2024.1403171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Background Distinct clinical features and molecular characteristics of left-sided colon cancer (LCC) and right-sided colon cancer (RCC) suggest significant variations in their tumor microenvironments (TME). These differences can impact the efficacy of immunotherapy, making it essential to investigate and understand these disparities. Methods We conducted a multi-omics analysis, including bulk RNA sequencing (bulk RNA-seq), single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing (WES), to investigate the constituents and characteristic differences of the tumor microenvironment (TME) in left-sided colon cancer (LCC) and right-sided colon cancer (RCC). Result Deconvolution algorithms revealed significant differences in infiltrated immune cells between left-sided colon cancer (LCC) and right-sided colon cancer (RCC), including dendritic cells, neutrophils, natural killer (NK) cells, CD4 and CD8 T cells, and M1 macrophages (P < 0.05). Notably, whole-exome sequencing (WES) data analysis showed a significantly higher mutation frequency in RCC compared to LCC (82,187/162 versus 18,726/115, P < 0.01). Single-cell analysis identified predominant tumor cell subclusters in RCC characterized by heightened proliferative potential and increased expression of major histocompatibility complex class I molecules. However, the main CD8 + T cell subpopulations in RCC exhibited a highly differentiated state, marked by T cell exhaustion and recent activation, defined as tumor-specific cytotoxic T lymphocytes (CTLs). Immunofluorescence and flow cytometry results confirmed this trend. Additionally, intercellular communication analysis demonstrated a greater quantity and intensity of interactions between tumor-specific CTLs and tumor cells in RCC. Conclusion RCC patients with an abundance of tumor-specific cytotoxic T lymphocytes (CTLs) and increased immunogenicity of tumor cells in the TME may be better candidates for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Dongfang Liu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zenghua Deng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Nan Luo
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenxia Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenzhe Hu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang Li
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zichao Qiu
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jianfei Chen
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jirun Peng
- Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
4
|
Hsu WH, LaBella KA, Lin Y, Xu P, Lee R, Hsieh CE, Yang L, Zhou A, Blecher JM, Wu CJ, Lin K, Shang X, Jiang S, Spring DJ, Xia Y, Chen P, Shen JP, Kopetz S, DePinho RA. Oncogenic KRAS Drives Lipofibrogenesis to Promote Angiogenesis and Colon Cancer Progression. Cancer Discov 2023; 13:2652-2673. [PMID: 37768068 PMCID: PMC10807546 DOI: 10.1158/2159-8290.cd-22-1467] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer. SIGNIFICANCE This study identified a molecular mechanism contributing to KRAS*-driven colorectal cancer progression via fibroblast transformation in the tumor microenvironment to produce VEGFA driving tumor angiogenesis. In preclinical models, targeting the KRAS*-TFCP2-VEGFA axis impaired tumor progression, revealing a potential novel therapeutic option for patients with KRAS*-driven colorectal cancer. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyle A. LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rumi Lee
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cheng-En Hsieh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Yang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ashley Zhou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan M. Blecher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kangyu Lin
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Denise J. Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peiwen Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Yadav D, Patil-Takbhate B, Khandagale A, Bhawalkar J, Tripathy S, Khopkar-Kale P. Next-Generation sequencing transforming clinical practice and precision medicine. Clin Chim Acta 2023; 551:117568. [PMID: 37839516 DOI: 10.1016/j.cca.2023.117568] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Next-generation sequencing (NGS) has revolutionized the field of genomics and is rapidly transforming clinical diagnosis and precision medicine. This advanced sequencing technology enables the rapid and cost-effective analysis of large-scale genomic data, allowing comprehensive exploration of the genetic landscape of diseases. In clinical diagnosis, NGS has proven to be a powerful tool for identifying disease-causing variants, enabling accurate and early detection of genetic disorders. Additionally, NGS facilitates the identification of novel disease-associated genes and variants, aiding in the development of targeted therapies and personalized treatment strategies. NGS greatly benefits precision medicine by enhancing our understanding of disease mechanisms and enabling the identification of specific molecular markers for disease subtypes, thus enabling tailored medical interventions based on individual characteristics. Furthermore, NGS contributes to the development of non-invasive diagnostic approaches, such as liquid biopsies, which can monitor disease progression and treatment response. The potential of NGS in clinical diagnosis and precision medicine is vast, yet challenges persist in data analysis, interpretation, and protocol standardization. This review highlights NGS applications in disease diagnosis, prognosis, and personalized treatment strategies, while also addressing challenges and future prospects in fully harnessing genomic potential within clinical practice.
Collapse
Affiliation(s)
- Deepali Yadav
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India; Department of Biotechnology, Dr. D. Y. Patil Arts Science and Commerce College, Pimpri Pune 411018, India
| | - Bhagyashri Patil-Takbhate
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India
| | - Anil Khandagale
- Department of Biotechnology, Dr. D. Y. Patil Arts Science and Commerce College, Pimpri Pune 411018, India
| | - Jitendra Bhawalkar
- Department of Community Medicine, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India
| | - Srikanth Tripathy
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India.
| | - Priyanka Khopkar-Kale
- Central Research Facility, Dr. D.Y Patil Medical College, Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth, Pimpri Pune 411018, India.
| |
Collapse
|
6
|
Li J, Lan Z, Liao W, Horner JW, Xu X, Liu J, Yoshihama Y, Jiang S, Shim HS, Slotnik M, LaBella KA, Wu CJ, Dunner K, Hsu WH, Lee R, Khanduri I, Terranova C, Akdemir K, Chakravarti D, Shang X, Spring DJ, Wang YA, DePinho RA. Histone demethylase KDM5D upregulation drives sex differences in colon cancer. Nature 2023; 619:632-639. [PMID: 37344599 PMCID: PMC10529424 DOI: 10.1038/s41586-023-06254-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - James W Horner
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xueping Xu
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jielin Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yohei Yoshihama
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Seok Shim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Slotnik
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle A LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Dunner
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rumi Lee
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Isha Khanduri
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kadir Akdemir
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Indiana University, Indianapolis, IN, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Liu QL, Zhou H, Zhou ZG, Chen HN. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev 2023; 42:575-587. [PMID: 37061644 DOI: 10.1007/s10555-023-10107-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huijie Zhou
- Department of Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zong-Guang Zhou
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hai-Ning Chen
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Ko A, Hasanain M, Oh YT, D'Angelo F, Sommer D, Frangaj B, Tran S, Bielle F, Pollo B, Paterra R, Mokhtari K, Soni RK, Peyre M, Eoli M, Papi L, Kalamarides M, Sanson M, Iavarone A, Lasorella A. LZTR1 Mutation Mediates Oncogenesis through Stabilization of EGFR and AXL. Cancer Discov 2023; 13:702-723. [PMID: 36445254 DOI: 10.1158/2159-8290.cd-22-0376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
LZTR1 is the substrate-specific adaptor of a CUL3-dependent ubiquitin ligase frequently mutated in sporadic and syndromic cancer. We combined biochemical and genetic studies to identify LZTR1 substrates and interrogated their tumor-driving function in the context of LZTR1 loss-of-function mutations. Unbiased screens converged on EGFR and AXL receptor tyrosine kinases as LZTR1 interactors targeted for ubiquitin-dependent degradation in the lysosome. Pathogenic cancer-associated mutations of LZTR1 failed to promote EGFR and AXL degradation, resulting in dysregulated growth factor signaling. Conditional inactivation of Lztr1 and Cdkn2a in the mouse nervous system caused tumors in the peripheral nervous system including schwannoma-like tumors, thus recapitulating aspects of schwannomatosis, the prototype tumor predisposition syndrome sustained by LZTR1 germline mutations. Lztr1- and Cdkn2a-deleted tumors aberrantly accumulated EGFR and AXL and exhibited specific vulnerability to EGFR and AXL coinhibition. These findings explain tumorigenesis by LZTR1 inactivation and offer therapeutic opportunities to patients with LZTR1-mutant cancer. SIGNIFICANCE EGFR and AXL are substrates of LZTR1-CUL3 ubiquitin ligase. The frequent somatic and germline mutations of LZTR1 in human cancer cause EGFR and AXL accumulation and deregulated signaling. LZTR1-mutant tumors show vulnerability to concurrent inhibition of EGFR and AXL, thus providing precision targeting to patients affected by LZTR1-mutant cancer. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Aram Ko
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Mohammad Hasanain
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Young Taek Oh
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Danika Sommer
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Brulinda Frangaj
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Suzanne Tran
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Franck Bielle
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Laboratory of Neuropathology, Paris, France
| | - Bianca Pollo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rosina Paterra
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Karima Mokhtari
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
| | - Rajesh Kumar Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Matthieu Peyre
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marica Eoli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Papi
- The Department of Experimental and Clinical, Medical Genetics Unit, Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Michel Kalamarides
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Neurosurgery Service, Paris, France
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
| | - Marc Sanson
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Brain Institute, ICM, AP-HP, University Hospital La Pitié Salpêtrière-Charles Foix, Service of Neurology 2-Mazarin, Equipe lLNCC, Paris, France
- Onconeurotek Tumor Bank, Brain and Spinal Cord Institute ICM, 75013 Paris, France
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Department of Neurology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| |
Collapse
|
9
|
Genetic and microenvironmental intra-tumor heterogeneity impacts colorectal cancer evolution and metastatic development. Commun Biol 2022; 5:937. [PMID: 36085309 PMCID: PMC9463147 DOI: 10.1038/s42003-022-03884-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractColorectal cancer (CRC) is a highly diverse disease, where different genomic instability pathways shape genetic clonal diversity and tumor microenvironment. Although intra-tumor heterogeneity has been characterized in primary tumors, its origin and consequences in CRC outcome is not fully understood. Therefore, we assessed intra- and inter-tumor heterogeneity of a prospective cohort of 136 CRC samples. We demonstrate that CRC diversity is forged by asynchronous forms of molecular alterations, where mutational and chromosomal instability collectively boost CRC genetic and microenvironment intra-tumor heterogeneity. We were able to depict predictor signatures of cancer-related genes that can foresee heterogeneity levels across the different tumor consensus molecular subtypes (CMS) and primary tumor location. Finally, we show that high genetic and microenvironment heterogeneity are associated with lower metastatic potential, whereas late-emerging copy number variations favor metastasis development and polyclonal seeding. This study provides an exhaustive portrait of the interplay between genetic and microenvironment intra-tumor heterogeneity across CMS subtypes, depicting molecular events with predictive value of CRC progression and metastasis development.
Collapse
|
10
|
Dynamic Co-Evolution of Cancer Cells and Cancer-Associated Fibroblasts: Role in Right- and Left-Sided Colon Cancer Progression and Its Clinical Relevance. BIOLOGY 2022; 11:biology11071014. [PMID: 36101394 PMCID: PMC9312176 DOI: 10.3390/biology11071014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The versatile crosstalk between cancer cells and cancer-associated fibroblasts (CAFs) of the tumour microenvironment (TME) drives colorectal carcinogenesis and heterogeneity. Colorectal cancer (CRC) can be classified by the anatomical sites from which the cancer arises, either from the right or left colon. Although the cancer cell–CAF interaction is being widely studied, its role in the progression of cancer in the right and left colon and cancer heterogeneity are still yet to be elucidated. Further insight into the complex interaction between different cellular components in the cancer niche, their evolutionary process and their influence on cancer progression would propel the discovery of effective targeted CRC therapy. Abstract Cancer is a result of a dynamic evolutionary process. It is composed of cancer cells and the tumour microenvironment (TME). One of the major cellular constituents of TME, cancer-associated fibroblasts (CAFs) are known to interact with cancer cells and promote colorectal carcinogenesis. The accumulation of these activated fibroblasts is linked to poor diagnosis in colorectal cancer (CRC) patients and recurrence of the disease. However, the interplay between cancer cells and CAFs is yet to be described, especially in relation to the sidedness of colorectal carcinogenesis. CRC, which is the third most commonly diagnosed cancer globally, can be classified according to the anatomical region from which they originate: left-sided (LCRC) and right-sided CRC (RCR). Both cancers differ in many aspects, including in histology, evolution, and molecular signatures. Despite occurring at lower frequency, RCRC is often associated with worse diagnosis compared to LCRC. The differences in molecular profiles between RCRC and LCRC also influence the mode of treatment that can be used to specifically target these cancer entities. A better understanding of the cancer cell–CAF interplay and its association with RCRC and LRCR progression will provide better insight into potential translational aspects of targeted treatment for CRC.
Collapse
|
11
|
El-Darzi N, Mast N, Buchner DA, Saadane A, Dailey B, Trichonas G, Pikuleva IA. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:902254. [PMID: 35721135 PMCID: PMC9198296 DOI: 10.3389/fphar.2022.902254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
A small dose of the anti-HIV drug efavirenz (EFV) was previously discovered to activate CYP46A1, a cholesterol-eliminating enzyme in the brain, and mitigate some of the manifestation of Alzheimer's disease in 5XFAD mice. Herein, we investigated the retina of these animals, which were found to have genetically determined retinal vascular lesions associated with deposits within the retinal pigment epithelium and subretinal space. We established that EFV treatment activated CYP46A1 in the retina, enhanced retinal cholesterol turnover, and diminished the lesion frequency >5-fold. In addition, the treatment mitigated fluorescein leakage from the aberrant blood vessels, deposit size, activation of retinal macrophages/microglia, and focal accumulations of amyloid β plaques, unesterified cholesterol, and Oil Red O-positive lipids. Studies of retinal transcriptomics and proteomics identified biological processes enriched with differentially expressed genes and proteins. We discuss the mechanisms of the beneficial EFV effects on the retinal phenotype of 5XFAD mice. As EFV is an FDA-approved drug, and we already tested the safety of small-dose EFV in patients with Alzheimer's disease, our data support further clinical investigation of this drug in subjects with retinal vascular lesions or neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - David A. Buchner
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Brian Dailey
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Georgios Trichonas
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Irina A. Pikuleva
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States,*Correspondence: Irina A. Pikuleva,
| |
Collapse
|
12
|
Assessment of the Molecular Heterogeneity of E-Cadherin Expression in Invasive Lobular Breast Cancer. Cancers (Basel) 2022; 14:cancers14020295. [PMID: 35053458 PMCID: PMC8773871 DOI: 10.3390/cancers14020295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Invasive lobular breast cancers (ILCs) are histologically classified by their discohesive growth pattern, due to loss of the cell adhesion glycoprotein E-cadherin (CDH1), which arises via mutation in CDH1 in around half of these tumours. A subset of these tumours, however, show mixed levels of E-cadherin expression. Here, we sought to address whether the distinct parts of individual tumours showing heterogeneous E-cadherin expression harbour distinct driver alterations. Using whole genome sequencing and methylation profiling of nine such cases, we identified that these tumours are clonally related, suggesting that they are part of the spectrum of ILC tumours. CDH1 mutant tumours showed a higher mutational burden indicative of APOBEC-mediated mutagenesis. In some cases, known clinically actionable driver mutations, such as PIK3CA, were exclusive to one component. Together, these results highlight the heterogeneity underpinning this special histological breast cancer. Abstract Mutations and loss of E-cadherin protein expression define the vast majority of invasive lobular carcinomas. In a subset of these cases, the heterogeneous expression of E-cadherin is observed either as wild-type (strong membranous) expression or aberrant expression (cytoplasmic expression). However, it is unclear as to whether the two components would be driven by distinct genetic or epigenetic alterations. Here, we used whole genome DNA sequencing and methylation array profiling of two separately dissected components of nine invasive lobular carcinomas with heterogeneous E-cadherin expression. E-cadherin negative and aberrant/positive components of E-cadherin heterogeneous tumours showed a similar mutational, copy number and promoter methylation repertoire, suggesting they arise from a common ancestor, as opposed to the collision of two independent tumours. We found that the majority of E-cadherin heterogeneous tumours harboured CDH1 mutations in both the E-cadherin negative and aberrant/positive components together with somatic mutations in additional driver genes known to be enriched in both pure invasive carcinomas of no special type and invasive lobular breast cancers, whereas these were less commonly observed in CDH1 wild-type tumours. CDH1 mutant tumours also exhibited a higher mutation burden as well as increased presence of APOBEC-dependent mutational signatures 2 and 13 compared to CDH1 wild-type tumours. Together, our results suggest that regardless of E-cadherin protein expression, tumours showing heterogeneous expression of E-cadherin should be considered as part of the spectrum of invasive lobular breast cancers.
Collapse
|