1
|
Zhang X, Mukherjee A, Halassa MM, Chen ZS. Mediodorsal thalamus regulates task uncertainty to enable cognitive flexibility. Nat Commun 2025; 16:2640. [PMID: 40097445 PMCID: PMC11914509 DOI: 10.1038/s41467-025-58011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
The mediodorsal (MD) thalamus is a critical partner for the prefrontal cortex (PFC) in cognitive control. Accumulating evidence has shown that the MD regulates task uncertainty in decision making and enhance cognitive flexibility. However, the computational mechanism of this cognitive process remains unclear. Here we trained biologically-constrained computational models to delineate the mechanistic role of MD in context-dependent decision making. We show that the addition of a feedforward MD structure to the recurrent PFC increases robustness to low cueing signal-to-noise ratio, enhances working memory, and enables rapid context switching. Incorporating genetically identified thalamocortical connectivity and interneuron cell types into the model replicates key neurophysiological findings in task-performing animals. Our model reveals computational mechanisms and geometric interpretations of MD in regulating cue uncertainty and context switching to enable cognitive flexibility. Our model makes experimentally testable predictions linking cognitive deficits with disrupted thalamocortical connectivity, prefrontal excitation-inhibition imbalance and dysfunctional inhibitory cell types.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Arghya Mukherjee
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
2
|
Jarne C, Caruso M. Effect in the spectra of eigenvalues and dynamics of RNNs trained with excitatory-inhibitory constraint. Cogn Neurodyn 2024; 18:1323-1335. [PMID: 38826641 PMCID: PMC11143133 DOI: 10.1007/s11571-023-09956-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 04/09/2023] Open
Abstract
In order to comprehend and enhance models that describes various brain regions it is important to study the dynamics of trained recurrent neural networks. Including Dale's law in such models usually presents several challenges. However, this is an important aspect that allows computational models to better capture the characteristics of the brain. Here we present a framework to train networks using such constraint. Then we have used it to train them in simple decision making tasks. We characterized the eigenvalue distributions of the recurrent weight matrices of such networks. Interestingly, we discovered that the non-dominant eigenvalues of the recurrent weight matrix are distributed in a circle with a radius less than 1 for those whose initial condition before training was random normal and in a ring for those whose initial condition was random orthogonal. In both cases, the radius does not depend on the fraction of excitatory and inhibitory units nor the size of the network. Diminution of the radius, compared to networks trained without the constraint, has implications on the activity and dynamics that we discussed here. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09956-w.
Collapse
Affiliation(s)
- Cecilia Jarne
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- CONICET, Buenos Aires, Argentina
| | - Mariano Caruso
- Present Address: Fundación I+D del Software Libre–FIDESOL, Granada, Spain
- Universidad Internacional de La Rioja–UNIR, La Rioja, Spain
| |
Collapse
|
3
|
Jarne C. Exploring Flip Flop memories and beyond: training Recurrent Neural Networks with key insights. Front Syst Neurosci 2024; 18:1269190. [PMID: 38600907 PMCID: PMC11004305 DOI: 10.3389/fnsys.2024.1269190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Training neural networks to perform different tasks is relevant across various disciplines. In particular, Recurrent Neural Networks (RNNs) are of great interest in Computational Neuroscience. Open-source frameworks dedicated to Machine Learning, such as Tensorflow and Keras have produced significant changes in the development of technologies that we currently use. This work contributes by comprehensively investigating and describing the application of RNNs for temporal processing through a study of a 3-bit Flip Flop memory implementation. We delve into the entire modeling process, encompassing equations, task parametrization, and software development. The obtained networks are meticulously analyzed to elucidate dynamics, aided by an array of visualization and analysis tools. Moreover, the provided code is versatile enough to facilitate the modeling of diverse tasks and systems. Furthermore, we present how memory states can be efficiently stored in the vertices of a cube in the dimensionally reduced space, supplementing previous results with a distinct approach.
Collapse
Affiliation(s)
- Cecilia Jarne
- Departamento de Ciencia y Tecnologia de la Universidad Nacional de Quilmes, Bernal, Quilmes, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Kuzmina E, Kriukov D, Lebedev M. Neuronal travelling waves explain rotational dynamics in experimental datasets and modelling. Sci Rep 2024; 14:3566. [PMID: 38347042 PMCID: PMC10861525 DOI: 10.1038/s41598-024-53907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Spatiotemporal properties of neuronal population activity in cortical motor areas have been subjects of experimental and theoretical investigations, generating numerous interpretations regarding mechanisms for preparing and executing limb movements. Two competing models, representational and dynamical, strive to explain the relationship between movement parameters and neuronal activity. A dynamical model uses the jPCA method that holistically characterizes oscillatory activity in neuron populations by maximizing the data rotational dynamics. Different rotational dynamics interpretations revealed by the jPCA approach have been proposed. Yet, the nature of such dynamics remains poorly understood. We comprehensively analyzed several neuronal-population datasets and found rotational dynamics consistently accounted for by a traveling wave pattern. For quantifying rotation strength, we developed a complex-valued measure, the gyration number. Additionally, we identified parameters influencing rotation extent in the data. Our findings suggest that rotational dynamics and traveling waves are typically the same phenomena, so reevaluation of the previous interpretations where they were considered separate entities is needed.
Collapse
Affiliation(s)
- Ekaterina Kuzmina
- Skolkovo Institute of Science and Technology, Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow, Russia, 121205.
- Artificial Intelligence Research Institute (AIRI), Moscow, Russia.
| | - Dmitrii Kriukov
- Artificial Intelligence Research Institute (AIRI), Moscow, Russia
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow, Russia, 121205
| | - Mikhail Lebedev
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia, 119992
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia, 194223
| |
Collapse
|
5
|
Soldado-Magraner S, Buonomano DV. Neural Sequences and the Encoding of Time. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:81-93. [PMID: 38918347 DOI: 10.1007/978-3-031-60183-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Converging experimental and computational evidence indicate that on the scale of seconds the brain encodes time through changing patterns of neural activity. Experimentally, two general forms of neural dynamic regimes that can encode time have been observed: neural population clocks and ramping activity. Neural population clocks provide a high-dimensional code to generate complex spatiotemporal output patterns, in which each neuron exhibits a nonlinear temporal profile. A prototypical example of neural population clocks are neural sequences, which have been observed across species, brain areas, and behavioral paradigms. Additionally, neural sequences emerge in artificial neural networks trained to solve time-dependent tasks. Here, we examine the role of neural sequences in the encoding of time, and how they may emerge in a biologically plausible manner. We conclude that neural sequences may represent a canonical computational regime to perform temporal computations.
Collapse
Affiliation(s)
| | - Dean V Buonomano
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Xue X, Wimmer RD, Halassa MM, Chen ZS. Spiking Recurrent Neural Networks Represent Task-Relevant Neural Sequences in Rule-Dependent Computation. Cognit Comput 2023; 15:1167-1189. [PMID: 37771569 PMCID: PMC10530699 DOI: 10.1007/s12559-022-09994-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Background Prefrontal cortical neurons play essential roles in performing rule-dependent tasks and working memory-based decision making. Methods Motivated by PFG recordings of task-performing mice, we developed an excitatory-inhibitory spiking recurrent neural network (SRNN) to perform a rule-dependent two-alternative forced choice (2AFC) task. We imposed several important biological constraints onto the SRNN, and adapted spike frequency adaptation (SFA) and SuperSpike gradient methods to train the SRNN efficiently. Results The trained SRNN produced emergent rule-specific tunings in single-unit representations, showing rule-dependent population dynamics that resembled experimentally observed data. Under varying test conditions, we manipulated the SRNN parameters or configuration in computer simulations, and we investigated the impacts of rule-coding error, delay duration, recurrent weight connectivity and sparsity, and excitation/inhibition (E/I) balance on both task performance and neural representations. Conclusions Overall, our modeling study provides a computational framework to understand neuronal representations at a fine timescale during working memory and cognitive control, and provides new experimentally testable hypotheses in future experiments.
Collapse
Affiliation(s)
- Xiaohe Xue
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Ralf D. Wimmer
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M. Halassa
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Pugavko MM, Maslennikov OV, Nekorkin VI. Multitask computation through dynamics in recurrent spiking neural networks. Sci Rep 2023; 13:3997. [PMID: 36899052 PMCID: PMC10006454 DOI: 10.1038/s41598-023-31110-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In this work, inspired by cognitive neuroscience experiments, we propose recurrent spiking neural networks trained to perform multiple target tasks. These models are designed by considering neurocognitive activity as computational processes through dynamics. Trained by input-output examples, these spiking neural networks are reverse engineered to find the dynamic mechanisms that are fundamental to their performance. We show that considering multitasking and spiking within one system provides insightful ideas on the principles of neural computation.
Collapse
Affiliation(s)
- Mechislav M Pugavko
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia
| | - Oleg V Maslennikov
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia.
| | - Vladimir I Nekorkin
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
8
|
Abstract
Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.
Collapse
Affiliation(s)
- Gouki Okazawa
- Center for Neural Science, New York University, New York, NY, USA;
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY, USA;
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
9
|
Zhang X, Long X, Zhang SJ, Chen ZS. Excitatory-inhibitory recurrent dynamics produce robust visual grids and stable attractors. Cell Rep 2022; 41:111777. [PMID: 36516752 PMCID: PMC9805366 DOI: 10.1016/j.celrep.2022.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Spatially modulated grid cells have been recently found in the rat secondary visual cortex (V2) during active navigation. However, the computational mechanism and functional significance of V2 grid cells remain unknown. To address the knowledge gap, we train a biologically inspired excitatory-inhibitory recurrent neural network to perform a two-dimensional spatial navigation task with multisensory input. We find grid-like responses in both excitatory and inhibitory RNN units, which are robust with respect to spatial cues, dimensionality of visual input, and activation function. Population responses reveal a low-dimensional, torus-like manifold and attractor. We find a link between functional grid clusters with similar receptive fields and structured excitatory-to-excitatory connections. Additionally, multistable torus-like attractors emerged with increasing sparsity in inter- and intra-subnetwork connectivity. Finally, irregular grid patterns are found in recurrent neural network (RNN) units during a visual sequence recognition task. Together, our results suggest common computational mechanisms of V2 grid cells for spatial and non-spatial tasks.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Xiaoyang Long
- Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | - Sheng-Jia Zhang
- Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Department of Neurosurgery, Xinqiao Hospital, Chongqing, China; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|