1
|
Pisarenko T, Papež N, Al-Anber MA, Dallaev R, Částková K, Ţălu Ş. A Development and Comparison Study of PVDF Membranes Enriched by Metal-Organic Frameworks. Polymers (Basel) 2025; 17:1140. [PMID: 40362924 PMCID: PMC12073247 DOI: 10.3390/polym17091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
This study is concerned with the research and development of nanofibrous hybrid materials functioning as membranes composed of polyvinylidene fluoride (PVDF) polymer and enriched with metal-organic frameworks (MOFs) as dopants for the adsorption and detection of gases, dyes, and heavy metals in wastewater. Several types of nanofiber composites are fabricated by electrostatic spinning. The prepared samples and their chemical, optical, and material properties are analyzed. Subsequently, the preliminary investigation of dye removal is conducted. Accordingly, the design and investigation of these nanofibrous structures may contribute to addressing critical environmental and technological challenges.
Collapse
Affiliation(s)
- Tatiana Pisarenko
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic; (T.P.); (N.P.); (R.D.)
| | - Nikola Papež
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic; (T.P.); (N.P.); (R.D.)
| | - Mohammed A. Al-Anber
- Department of Chemistry, Faculty of Sciences, Applied Science Private University, P.O. Box 166, Amman 11931, Jordan;
| | - Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, the Czech Republic; (T.P.); (N.P.); (R.D.)
| | - Klára Částková
- Central European Institute of Technology, Purkyňova 656/123, 61200 Brno, the Czech Republic;
- Department of Ceramics and Polymers, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61600 Brno, the Czech Republic
| | - Ştefan Ţălu
- Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Constantin Daicoviciu Street, No. 15, 400020 Cluj-Napoca, Cluj County, Romania
| |
Collapse
|
2
|
Sherman D, Landberg E, Peringath AR, Kar-Narayan S, Tan JC. Fine-Scale Aerosol-Jet Printing of Luminescent Metal-Organic Framework Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39365709 PMCID: PMC11492290 DOI: 10.1021/acsami.4c10713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Fabrication of metal-organic framework (MOF) thin films is an ongoing challenge to achieve effective device integration. Inkjet printing has been employed to print various luminescent metal-organic framework (MOF) films. Luminescent metal-organic nanosheets (LMONs), nanometer-thin particles of MOF materials with comparatively large micrometer lateral dimensions, provide an ideal morphology that offers enhancements over analogous MOFs in luminescent properties such as intensity and photoluminescent quantum yield. The morphology is also better suited to the formation of thin films. This work harnesses the preferential features of LMONs to access the advanced technique of aerosol-jet printing (AJP) to print luminescent films with precise geometries and patterns across the micrometer and centimeter length scales. AJP of LMONs exhibiting red (R), green (G), and blue (B) emission were studied systematically to reveal the increase of luminescence upon additive layering printing until a threshold was reached limited by self-quenching. By combining different LMON emitters, emission chromaticity and intensity were shown to be tunable, including the combination of RGB emitters to fabricate white-light-emitting films. A white-light LMON film was printed onto a UV light emitting diode (LED), producing a working white-light-emitting diode. Printing with multiple distinct photoluminescent inks produced intricate multicolor patterns that dynamically responded to excitation wavelength, acting either as micrometer-scale LED-type cells or larger visual tags. Collectively, the work offers an advancement for MOF thin films by printing MON materials using AJP, offering a precise method for manufacturing a wide range of critical functional devices, from luminescent sensors to optoelectronics, and more broadly even the opportunity for printed circuitry with conductive MONs.
Collapse
Affiliation(s)
- Dylan
A. Sherman
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Erik Landberg
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Anjana Ramesh Peringath
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Sohini Kar-Narayan
- Department
of Materials Science & Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Jin-Chong Tan
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| |
Collapse
|
3
|
Liu Q, Chen X, Wu J, Zhang L, He G, Tian S, Zhao X. Enhanced Luminescence of Dye-Decorated ZIF-8 Composite Films via Controllable D-A Interactions for White Light Emission. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3656-3667. [PMID: 36856700 DOI: 10.1021/acs.langmuir.2c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) constructed by metal ions/clusters and organic linkers are used to encapsulate fluorescent guest species with aggregation-caused quenching (ACQ) effects to enhance fluorescence properties due to their porous structures and high specific surface areas. However, there would be a problem of matching between MOF pores and guest molecules' sizes. In this paper, amorphous ZIF-8 was modified by carboxyl functional groups (H3BTC-ZIF-8) via introducing the 1,2,4-benzenetricarbonic acid (H3BTC) ligand into the ZIF-8 sol system. Moreover, H3BTC-ZIF-8 was used for the loading of organic fluorescent dyes rhodamine 6G (R6G) and coumarin 151 (C151) to prepare R6G/C151/H3BTC-ZIF-8 composite films. A white-light-emitting composite film (R6G/C151/H3BTC-ZIF-8) with CIE coordinates of (0.323, 0.347) was successfully prepared by compounding fluorescent dyes (R6G and C151) with H3BTC-modified ZIF-8, whose photoluminescence quantum yield (PLQY) can reach 64.0%. It was higher than the PLQY of the composite films prepared by crystalline ZIF-8 (40.2%) or amorphous ZIF-8 without H3BTC (48.0%) compounded with the same concentrations of dyes. The fluorescence enhancement was probably attributed to an increased amount of active sites of H3BTC-modified ZIF-8 interacting with dyes C151 and R6G. This can form hydrogen bonds between H3BTC-ZIF-8 and C151, and weak electron donor-acceptor (D-A) interactions between H3BTC-ZIF-8 and R6G molecules, respectively, thus enhancing the interactions between dyes and ZIF-8 and reducing the ACQ effect existing between dye molecules. Therefore, this strategy could provide an important guidance to develop white-light-emissive materials.
Collapse
Affiliation(s)
- Qiufen Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Xuelei Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Jiahao Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Liming Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Guanjie He
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Shouqin Tian
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China
| |
Collapse
|
4
|
Kachwal V, Tan J. Stimuli-Responsive Electrospun Fluorescent Fibers Augmented with Aggregation-Induced Emission (AIE) for Smart Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204848. [PMID: 36373688 PMCID: PMC9811457 DOI: 10.1002/advs.202204848] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This review addresses the latest advancements in the integration of aggregation-induced emission (AIE) materials with polymer electrospinning, to accomplish fine-scale electrospun fibers with tunable photophysical and photochemical properties. Micro- and nanoscale fibers augmented with AIE dyes (termed AIEgens) are bespoke composite systems that can overcome the limitation posed by aggregation-caused quenching, a critical deficiency of conventional luminescent materials. This review comprises three parts. First, the reader is exposed to the basic concepts of AIE and the fundamental mechanisms underpinning the restriction of intermolecular motions. This is followed by an introduction to electrospinning techniques pertinent to AIE-based fibers, and the core parameters for controlling fiber architecture and resultant properties. Second, exemplars are drawn from latest research to demonstrate how electrospun nanofibers and porous films incorporating modified AIEgens (especially tetraphenylethylene and triphenylamine derivatives) can yield enhanced photostability, photothermal properties, photoefficiency (quantum yield), and improved device sensitivity. Advanced applications are drawn from several promising sectors, encompassing optoelectronics, drug delivery and biology, chemosensors and mechanochromic sensors, and innovative photothermal devices, among others. Finally, the outstanding challenges together with potential opportunities in the nascent field of electrospun AIE-active fibers are presented, for stimulating frontier research and explorations in this exciting field.
Collapse
Affiliation(s)
- Vishal Kachwal
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Jin‐Chong Tan
- Multifunctional Materials & Composites (MMC) LaboratoryDepartment of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| |
Collapse
|
5
|
Zhang Y, Mollick S, Tricarico M, Ye J, Sherman DA, Tan JC. Turn-On Fluorescence Chemical Sensing through Transformation of Self-Trapped Exciton States at Room Temperature. ACS Sens 2022; 7:2338-2344. [PMID: 35948422 PMCID: PMC9425555 DOI: 10.1021/acssensors.2c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most of the current fluorescence sensing materials belong to the turn-off type, which make it hard to detect toxic substances such as benzene, toluene, and xylene (BTX) due to the lack of active chemical sites, thereby limiting their development and practical use. Herein, we show a guest-host mechanism stemming from the confined emitter's self-trapped exciton (STE) states or electron-phonon coupling to achieve turn-on fluorescence. We designed a luminescent guest@metal-organic framework (LG@MOF) composite material, termed perylene@MIL-68(In), and established its E-type excimeric emission properties in the solid state. Upon exposure to BTX, especially xylene, we show that the E-excimer readily converts into the Y-excimer due to nanoconfinement of the MOF structure. Such a transformation elevates the fluorescence intensity, thus realizing a turn-on type fluorescent sensor for detecting BTX solvents. Our results further demonstrate that controlling the STE states of perylene at room temperature (vs the previous report of <50 K) is possible via nanoscale confinement, paving the way to enabling turn-on type luminescent sensors for engineering practical applications.
Collapse
|
6
|
Wang HR, Tian XK, Zhang JR, Wen MY, Yang XG. Acridine based metal-organic framework host-guest featuring efficient photoelectrochemical-type photodetector and white LED. Dalton Trans 2022; 51:11231-11235. [PMID: 35880646 DOI: 10.1039/d2dt01649d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel metal-organic framework (MOF) host-guest material [Cd3(EtOIPA)4(HAD)2]·H2O has been successfully synthesized by the reaction of 5-ethoxyisophthalic acid (EtOIPA), acridine (AD) and Cd(II) salts under hydrothermal conditions. Structurally, the title MOF possesses a trinucleate Cd(II) based 2D double-layer with the protonated AD cations as the template encapsulated into the grids. The combination of experiments and theoretical calculations reveals that the orderly arrangement of EtOIPA dimers, protonated AD cations and trinucleate Cd(II) clusters generates highly delocalized π-electron channels with a prolonged exciton lifetime. The MOF powders show bright yellow emission with a long lifetime of 50.63 ns. Photoelectrochemical measurements reveal a high photocurrent density ratio of 290 between light and dark conditions at 0 V bias potential, making it a perfect self-driven photodetector. By coating the yellow phosphor on a commercially available blue LED, a high performance white LED with CIE, CCT and CRI values of (0.325, 0.336), 88.2 and 5844 K, respectively can be obtained.
Collapse
Affiliation(s)
- Hua-Rui Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China.
| | - Xu-Ke Tian
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China. .,College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Ji-Rui Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China.
| | - Meng-Yao Wen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China.
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang 471934, P. R. China.
| |
Collapse
|
7
|
Gutiérrez M, Zhang Y, Tan JC. Confinement of Luminescent Guests in Metal-Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chem Rev 2022; 122:10438-10483. [PMID: 35427119 PMCID: PMC9185685 DOI: 10.1021/acs.chemrev.1c00980] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/27/2022]
Abstract
This review gives an authoritative, critical, and accessible overview of an emergent class of fluorescent materials termed "LG@MOF", engineered from the nanoscale confinement of luminescent guests (LG) in a metal-organic framework (MOF) host, realizing a myriad of unconventional materials with fascinating photophysical and photochemical properties. We begin by summarizing the synthetic methodologies and design guidelines for representative LG@MOF systems, where the major types of fluorescent guest encompass organic dyes, metal ions, metal complexes, metal nanoclusters, quantum dots, and hybrid perovskites. Subsequently, we discuss the methods for characterizing the resultant guest-host structures, guest loading, photophysical properties, and review local-scale techniques recently employed to elucidate guest positions. A special emphasis is paid to the pros and cons of the various methods in the context of LG@MOF. In the following section, we provide a brief tutorial on the basic guest-host phenomena, focusing on the excited state events and nanoscale confinement effects underpinning the exceptional behavior of LG@MOF systems. The review finally culminates in the most striking applications of LG@MOF materials, particularly the "turn-on" type fluorochromic chemo- and mechano-sensors, noninvasive thermometry and optical pH sensors, electroluminescence, and innovative security devices. This review offers a comprehensive coverage of general interest to the multidisciplinary materials community to stimulate frontier research in the vibrant sector of light-emitting MOF composite systems.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Yang Zhang
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| | - Jin-Chong Tan
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| |
Collapse
|
8
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022; 61:e202202207. [PMID: 35212125 DOI: 10.1002/anie.202202207] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/12/2022]
Abstract
The fabrication of MOF polymer composite materials enables the practical applications of MOF-based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low-loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid- and solid-state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8-fold enhancement in the protection against an ultra-toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF-based protective gear against nerve agents.
Collapse
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Megan C Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - John H Xin
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
9
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - Gregory W. Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - John H. Xin
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
10
|
High-Performance photoinduced antimicrobial membrane toward efficient PM2.5-0.3 capture and Oil-Water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|