1
|
Shahsanaei F, Gharibzadeh A, Behrooj S, Abbaszadeh S, Nourmohammadi M. A systematic review and bioinformatic study on clinical, paraclinical, and genetic factors predisposing to stent restenosis following percutaneous coronary intervention. BMC Cardiovasc Disord 2024; 24:304. [PMID: 38877398 PMCID: PMC11177414 DOI: 10.1186/s12872-024-03955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Stent restenosis is a relatively common phenomenon among patients with coronary heart disease undergoing percutaneous coronary intervention (PCI). It seems that a set of clinical, laboratory, and even genetic factors make people susceptible to such a phenomenon and in fact, this is multi-factorial. We aimed to first determine the underlying clinical and laboratory risk factors for the occurrence of stent re-stenosis after PCI based on a systematic review study, and after that, through a bioinformatics study, to evaluate the related genes and microRNAs with the occurrence of stent re-stenosis. MAIN TEXT In the first step, the manuscript databases including Medline, Web of Knowledge, Google Scholar, Scopus, and Cochrane were deeply searched by the two blinded investigators for all eligible studies based on the considered keywords to introduce clinical and laboratory determinants of stent re-stenosis. In the bioinformatic phase, and following a review of the literature to identify genes and microRNAs involved in restenosis, the interaction of each gene with other genes associated with stent re-stenosis was determined by GeneMANIA network analysis and Cytoscape software. Overall, 67 articles (including 40,789 patients) on clinical and biochemical predictors for stent restenosis and 25 articles on genetic determinants of this event were eligible for the final analysis. The predictors for this event were categorized into four subgroups patient-based parameters including traditional cardiovascular risk profiles, stent-based parameters including type and diametric characteristics of the stents used, coronary lesion-based parameters including several two target lesions and coronary involvement severity and laboratory-based parameters particularly related to activation of inflammatory processes. In the bioinformatic phase, we uncovered 42 genes that have been described to be involved in such a phenomenon considering a special position for genes encoding inflammatory cytokines. Also, 12 microRNAs have been pointed to be involved in targeting genes involved in stent re-stenosis. CONCLUSIONS The incidence of stent re-stenosis will be the result of a complex interaction of clinical risk factors, laboratory factors mostly related to the activation of inflammatory processes, and a complex network of gene-to-gene interactions.
Collapse
Affiliation(s)
- Farzad Shahsanaei
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdullah Gharibzadeh
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soudabeh Behrooj
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shahin Abbaszadeh
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mahboobeh Nourmohammadi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
2
|
Hsu YL, Huang MS, Chang HY, Lee CH, Chen DP, Li YH, Chao TH, Liu YW, Liu PY. Application of genetic risk score for in-stent restenosis of second- and third-generation drug-eluting stents in geriatric patients. BMC Geriatr 2023; 23:443. [PMID: 37468836 DOI: 10.1186/s12877-023-04103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The second-and third-generation drug-eluting stents (DESs) in-stent restenosis (ISR) genetic risk score (GRS) model has been previously validated. However, the model has not been validated in geriatric patients. Therefore, we conducted this study to test the feasibility of the DES-ISR GRS model in geriatric patients with coronary artery disease (CAD) in Taiwan. METHODS We conducted a retrospective, single-center cohort study and included geriatric patients (age ≥ 65 years) with CAD and second-or third-generation DES(s) deployment. Patients undergoing maintenance dialysis were excluded. ISR was defined as ≥ 50% luminal narrowing on the follow-up coronary arteriography. The DES-ISR GRS model included five selected exonic single-nucleotide polymorphisms (SNPs): CAMLG, GALNT2, C11orf84, THOC5, and SAMD11. The GRS was defined as the sum of the five selected SNPs for the risk allele. RESULTS We enrolled 298 geriatric patients from January 2010 and December 2019 in this study. After propensity score matching, there were 192 geriatric patients with CAD in the final analysis, of which 32 patients had ISR. Patients were divided into two groups based on their GRS values: low (0-2) and high (≥ 3) GRS. A high GRS was significantly associated with DES-ISR in geriatric patients. CONCLUSION Those geriatric patients with a high GRS had significantly higher second-or third-generation DES ISR rates. The five SNP-derived DES-ISR GRS model could provide genetic information for interventional cardiologists to treat geriatric patients with CAD. TRIAL REGISTRATION The primary study protocol was registered with clinicaltrials.org. with registration number: NCT03877614; on March 15, 2019. ( http://clinicaltrials.gov/ct2/show/NCT03877614 ).
Collapse
Affiliation(s)
- Yu-Ling Hsu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Mu-Shiang Huang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Rd. North District, Tainan, 704, Taiwan
| | - Cheng-Han Lee
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Dao-Peng Chen
- KimForest Enterprise Co., Ltd, New Taipei City, 221, Taiwan
| | - Yi-Heng Li
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Ting-Hsin Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Yen-Wen Liu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Rd. North District, Tainan, 704, Taiwan.
| | - Ping-Yen Liu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Rd. North District, Tainan, 704, Taiwan.
| |
Collapse
|
3
|
Al Hageh C, Chacar S, Venkatachalam T, Gauguier D, Abchee A, Chammas E, Hamdan H, O’Sullivan S, Zalloua P, Nader M. Genetic Variants in PHACTR1 & LPL Mediate Restenosis Risk in Coronary Artery Patients. Vasc Health Risk Manag 2023; 19:83-92. [PMID: 36814994 PMCID: PMC9940491 DOI: 10.2147/vhrm.s394695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/25/2022] [Indexed: 02/17/2023] Open
Abstract
Background and Objective Coronary artery disease (CAD) is a major cause of death worldwide. Revascularization via stent placement or coronary artery bypass grafting (CABG) are standard treatments for CAD. Despite a high success rate, these approaches are associated with long-term failure due to restenosis. Risk factors associated with restenosis were investigated using a case-control association study design. Methods Five thousand two hundred and forty-two patients were enrolled in this study and were assigned as follows: Stenosis Group: 3570 patients with CAD >50% without a prior stent or CABG (1394 genotyped), and Restenosis Group: 1672 patients with CAD >50% and prior stent deployment or CABG (705 genotyped). Binomial regression models were applied to investigate the association of restenosis with diabetes, hypertension, and dyslipidemia. The genetic association with restenosis was conducted using PLINK 1.9. Results Dyslipidemia is a major risk factor (Odds Ratio (OR) = 2.14, P-value <0.0001) for restenosis particularly among men (OR = 2.32, P < 0.0001), while type 2 diabetes (T2D) was associated with an increased risk of restenosis in women (OR = 1.36, P = 0.01). The rs9349379 (PHACTR1) and rs264 (LPL) were associated with an increased risk of restenosis in our patients. PHACTR1 variant was associated with increased risk of restenosis mainly in women and in diabetic patients, while the LPL variant was associated with increased risk of restenosis in men. Conclusion The rs9349379 in PHACTR1 gene is significantly associated with restenosis, this association is more pronounced in women and in diabetic patients. The rs264 in LPL gene was associated with increased risk of restenosis in male patients.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| | - Stephanie Chacar
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Thenmozhi Venkatachalam
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Dominique Gauguier
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada,Université Paris Cité, INSERM, Paris, France
| | - Antoine Abchee
- Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Elie Chammas
- School of Medicine, Lebanese University, Beirut, Lebanon
| | - Hamdan Hamdan
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Siobhan O’Sullivan
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| | - Pierre Zalloua
- Department of Molecular Biology and Genetics, College of Medicine and Health Sciences, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates,Biotechnology Center, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates,Harvard T.H. Chan School of Public Health, Boston, MA, USA,Correspondence: Pierre Zalloua; Moni Nader, College of Medicine and Health Sciences, Khalifa University for Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates, Email ;
| | - Moni Nader
- Department of Physiology and Immunology College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, UAE,Biotechnology Center, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Rodríguez A, Barroso P, Olmo A, Yúfera A. Bioimpedance Sensing of Implanted Stent Occlusions: Smart Stent. BIOSENSORS 2022; 12:416. [PMID: 35735563 PMCID: PMC9221340 DOI: 10.3390/bios12060416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Coronary artery disease is one of the most common diseases in developed countries and affects a large part of the population of developing countries. Preventing restenosis in patients with implanted stents is an important current medical problem. The purpose of this work is to analyse the viability of bioimpedance sensing to detect the formation of atheromatous plaque in an implantable stent. Simulations in COMSOL Multiphysics were performed to analyse the performance of the proposed bioimpedance sensing system, based on the Sheffield technique. Both non-pathological and pathological models (with atheromatous plaque), including the flow of blood were considered. Simulations with the non-pathological model showed a homogeneous distribution of the measured current intensity in the different electrodes, for every configuration. On the other hand, simulations with the pathological model showed a significant decrease of the measured current intensity in the electrodes close to the simulated atheromatous plaque. The presence of the atheromatous plaque can, therefore, be detected by the system with a simple algorithm, avoiding the full reconstruction of the image and the subsequent computational processing requirements.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Instituto de Microelectrónica de Sevilla (IMSE-CSIC), Universidad de Sevilla, 41012 Sevilla, Spain; (A.R.); (A.Y.)
| | - Pablo Barroso
- Departamento de Física Aplicada III, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Alberto Olmo
- Instituto de Microelectrónica de Sevilla (IMSE-CSIC), Universidad de Sevilla, 41012 Sevilla, Spain; (A.R.); (A.Y.)
| | - Alberto Yúfera
- Instituto de Microelectrónica de Sevilla (IMSE-CSIC), Universidad de Sevilla, 41012 Sevilla, Spain; (A.R.); (A.Y.)
| |
Collapse
|
5
|
Masbuchin AN, Rohman MS, Liu PY. Role of Glycosylation in Vascular Calcification. Int J Mol Sci 2021; 22:9829. [PMID: 34575990 PMCID: PMC8469761 DOI: 10.3390/ijms22189829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is an important step in post-translational protein modification. Altered glycosylation results in an abnormality that causes diseases such as malignancy and cardiovascular diseases. Recent emerging evidence highlights the importance of glycosylation in vascular calcification. Two major types of glycosylation, N-glycosylation and O-glycosylation, are involved in vascular calcification. Other glycosylation mechanisms, which polymerize the glycosaminoglycan (GAG) chain onto protein, resulting in proteoglycan (PG), also have an impact on vascular calcification. This paper discusses the role of glycosylation in vascular calcification.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|