1
|
Burns R, Chiaro D, Davison H, Arendse CJ, King GM, Guha S. Stabilizing Metal Halide Perovskite Films via Chemical Vapor Deposition and Cryogenic Electron Beam Patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406815. [PMID: 39538997 DOI: 10.1002/smll.202406815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Halide perovskites are hailed as semiconductors of the 21st century. Chemical vapor deposition (CVD), a solvent-free method, allows versatility in the growth of thin films of 3- and 2D organic-inorganic halide perovskites. Using CVD grown methylammonium lead iodide (MAPbI3) films as a prototype, the impact of electron beam dosage under cryogenic conditions is evaluated. With 5 kV accelerating voltage, the dosage is varied between 50 and 50000 µC cm-2. An optimum dosage of 35 000 µC cm-2 results in a significant blue shift and enhancement of the photoluminescence peak. Concomitantly, a strong increase in the photocurrent is observed. A similar electron beam treatment on chlorine incorporated MAPbI3, where chlorine is known to passivate defects, shows a blue shift in the photoluminescence without improving the photocurrent properties. Low electron beam dosage under cryogenic conditions is found to damage CVD grown 2D phenylethlyammoinum lead iodide films. Monte Carlo simulations reveal differences in electron beam interaction with 3- and 2D halide perovskite films.
Collapse
Affiliation(s)
- Randy Burns
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Dylan Chiaro
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Harrison Davison
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher J Arendse
- Department of Physics and Astronomy, Nano-Micro Manufacturing Facility, University of the Western Cape, Bellville, 7535, South Africa
| | - Gavin M King
- Department of Physics and Astronomy, Department of Biochemistry, and MU Materials Science and Engineering Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Suchismita Guha
- Department of Physics and Astronomy and MU Materials Science and Engineering Institute, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Arendse CJ, Burns R, Beckwitt D, Babaian D, Klue S, Stalla D, Karapetrova E, Miceli PF, Guha S. Insights into the Growth Orientation and Phase Stability of Chemical-Vapor-Deposited Two-Dimensional Hybrid Halide Perovskite Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59055-59065. [PMID: 38055639 DOI: 10.1021/acsami.3c14559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chemical vapor deposition (CVD) offers a large-area, scalable, and conformal growth of perovskite thin films without the use of solvents. Low-dimensional organic-inorganic halide perovskites, with alternating layers of organic spacer groups and inorganic perovskite layers, are promising for enhancing the stability of optoelectronic devices. Moreover, their multiple quantum-well structures provide a powerful platform for tuning excitonic physics. In this work, we show that the CVD process is conducive to the growth of 2D hybrid halide perovskite films. Using butylammonium (BA) and phenylethylammonium (PEA) cations, the growth parameters of BA2PbI4 and PEA2PbI4 and mixed halide perovskite films were first optimized. These films are characterized by well-defined grain boundaries and display characteristic absorption and emission features of the 2D quantum wells. X-ray diffraction (XRD) and a noninteger dimensionality model of the absorption spectrum provide insights into the orientation of the crystalline planes. Unlike BA2PbI4, temperature-dependent photoluminescence measurements from PEA2PbI4 show a single excitonic peak throughout the temperature range from 20 to 350 K, highlighting the lack of defect states. These results further corroborate the temperature-dependent synchrotron-based XRD results. Furthermore, the nonlinear optical properties of the CVD-grown perovskite films are investigated, and a high third harmonic generation efficiency is observed.
Collapse
Affiliation(s)
- Christopher J Arendse
- Department of Physics and Astronomy, University of the Western Cape, Bellville 7535, South Africa
| | - Randy Burns
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - David Beckwitt
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Dallar Babaian
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Stephen Klue
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - David Stalla
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri 65211, United States
| | - Evguenia Karapetrova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Paul F Miceli
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Suchismita Guha
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Geng X, Chen Y, Li Y, Ren J, Dun G, Qin K, Lin Z, Peng J, Tian H, Yang Y, Xie D, Ren T. Lead-Free Halide Perovskites for Direct X-Ray Detectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300256. [PMID: 37232232 PMCID: PMC10427383 DOI: 10.1002/advs.202300256] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Lead halide perovskites have made remarkable progress in the field of radiation detection owing to the excellent and unique optoelectronic properties. However, the instability and the toxicity of lead-based perovskites have greatly hindered its practical applications. Alternatively, lead-free perovskites with high stability and environmental friendliness thus have fascinated significant research attention for direct X-ray detection. In this review, the current research progress of X-ray detectors based on lead-free halide perovskites is focused. First, the synthesis methods of lead-free perovskites including single crystals and films are discussed. In addition, the properties of these materials and the detectors, which can provide a better understanding and designing satisfactory devices are also presented. Finally, the challenge and outlook for developing high-performance lead-free perovskite X-ray detectors are also provided.
Collapse
Affiliation(s)
- Xiangshun Geng
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yu‐Ang Chen
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yuan‐Yuan Li
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Jun Ren
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Guan‐Hua Dun
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Ken Qin
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Zhu Lin
- Beijing National Research Center for Information Science and TechnologyTsinghua UniversityBeijing100084P. R. China
| | - Jiali Peng
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - He Tian
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Yi Yang
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Dan Xie
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| | - Tian‐Ling Ren
- School of Integrated Circuit & Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
4
|
Fomanyuk S, Vorobets V, Rusetskyi I, Kolbasov GY, Smilyk V, Danilov M. Photoelectrochemical determination of Pb2+ by combined electrochemical-chemical precipitations of PbI2 films. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|