1
|
Tang H, Evers TMJ, Babaei M, Mashaghi A. Revealing Mechanopathology Induced by Dengue NS1 Using Organ Chips and Single-Cell Force Spectroscopy. ACS Biomater Sci Eng 2025; 11:2448-2455. [PMID: 40131123 PMCID: PMC12001184 DOI: 10.1021/acsbiomaterials.4c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Capillary leakage is a hallmark of severe dengue, yet its precise mechanisms remain elusive. Emerging evidence highlights the dengue virus's targeting of mechanically active endothelial cells as a key contributor to dengue shock syndrome. The viral nonstructural protein 1 (NS1) has been identified as a central player, disrupting endothelial integrity and inducing vascular hyperpermeability independently of pro-inflammatory cytokines. This study provides a direct assessment of NS1-induced endothelial pathology by combining single-cell force spectroscopy and a microvessel-on-a-chip platform. We demonstrate that NS1 significantly alters endothelial cell mechanics, reducing cell stiffness and compromising junctional integrity, thereby directly linking these mechanical alterations to vascular dysfunction. These findings establish a framework for understanding the mechano-pathology of dengue and offer a platform for developing targeted therapeutic strategies to mitigate severe disease outcomes.
Collapse
Affiliation(s)
| | | | - Mehrad Babaei
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering,
Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, 2334CC Leiden, The Netherlands
| |
Collapse
|
2
|
Rodenburg WS, Ebben SFA, Eeftens JM. Robust quantification of cellular mechanics using optical tweezers. BIOPHYSICAL REPORTS 2025; 5:100199. [PMID: 39947327 PMCID: PMC11910095 DOI: 10.1016/j.bpr.2025.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025]
Abstract
The mechanical properties of cells are closely related to function and play a crucial role in many cellular processes, including migration, differentiation, and cell fate determination. Numerous methods have been developed to assess cell mechanics under various conditions, but they often lack accuracy on biologically relevant piconewton-range forces or have limited control over the applied force. Here, we present a straightforward approach for using optically trapped polystyrene beads to accurately apply piconewton-range forces to adherent and suspended cells. We precisely apply a constant force to cells by means of a force-feedback system, allowing for quantification of deformation, cell stiffness, and creep response from a single measurement. Using drug-induced perturbations of the cytoskeleton, we show that this approach is sensitive to detecting changes in cellular mechanical properties. Collectively, we provide a framework for using optical tweezers to apply highly accurate forces to adherent and suspended cells and describe straightforward metrics to quantify cellular mechanical properties.
Collapse
Affiliation(s)
- Wessel S Rodenburg
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Sven F A Ebben
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Jorine M Eeftens
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Panichi V, Costantini S, Grasso M, Arciola CR, Dolzani P. Innate Immunity and Synovitis: Key Players in Osteoarthritis Progression. Int J Mol Sci 2024; 25:12082. [PMID: 39596150 PMCID: PMC11594236 DOI: 10.3390/ijms252212082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive disease of the joint. Although representing the most frequent cause of disability in the elderly, OA remains partly obscure in its pathogenic mechanisms and is still the orphan of resolutive therapies. The concept of what was once considered a "wear and tear" of articular cartilage is now that of an inflammation-related disease that affects over time the whole joint. The attention is increasingly focused on the synovium. Even from the earliest clinical stages, synovial inflammation (or synovitis) is a crucial factor involved in OA progression and a major player in pain onset. The release of inflammatory molecules in the synovium mediates disease progression and worsening of clinical features. The activation of synovial tissue-resident cells recalls innate immunity cells from the bloodstream, creating a proinflammatory milieu that fuels and maintains a damaging condition of low-grade inflammation in the joint. In such a context, cellular and molecular inflammatory behaviors in the synovium could be the primum movens of the structural and functional alterations of the whole joint. This paper focuses on and discusses the involvement of innate immunity cells in synovitis and their role in the progression of OA.
Collapse
Affiliation(s)
- Veronica Panichi
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Silvia Costantini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Merimma Grasso
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
| | - Carla Renata Arciola
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40136 Bologna, Italy; (S.C.); (M.G.)
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Paolo Dolzani
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
4
|
Evers TMJ, Babaei M, Mashaghi A. Probing human immune cell mechanics using acoustic force spectroscopy. STAR Protoc 2024; 5:102861. [PMID: 38367234 PMCID: PMC10879795 DOI: 10.1016/j.xpro.2024.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024] Open
Abstract
Immune cells continuously adapt their mechanical properties for proper circulation and elicitation of immune responses. Here, we provide a step-by-step protocol for probing the single-cell mechanical properties of primary human monocytes using acoustic force spectroscopy (AFS). We describe steps for the calibration of the AFS chips, the isolation of monocytes from buffy coats, and the probing of monocyte mechanics using AFS. We then detail the data analysis strategy. The protocol is useful for characterizing a wide range of immune cells under various conditions in physiology and pathology. For complete details on the use and execution of this protocol, please refer to Evers et al. 1 and Evers et al.2.
Collapse
Affiliation(s)
- Tom M J Evers
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands; Laboratory for Interdisciplinary Medical Innovations, Centre for Interdisciplinary Genome Research, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands.
| | - Mehrad Babaei
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands; Laboratory for Interdisciplinary Medical Innovations, Centre for Interdisciplinary Genome Research, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands; Laboratory for Interdisciplinary Medical Innovations, Centre for Interdisciplinary Genome Research, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands.
| |
Collapse
|
5
|
Zhang D, Wang Y, Wang J, Fan X, Zhang S, Liu M, Ma L. Rethinking the relationships between gel like structure and sludge dewaterability based on a binary gel like structure model: Implications for the online sensing of dewaterability. WATER RESEARCH 2024; 249:120971. [PMID: 38101042 DOI: 10.1016/j.watres.2023.120971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/26/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
The digital transformation of sludge treatment processes requires online sensing of dewaterability. This topic has been attempted for many years based on macroscopic shear rheology. However, the relationship between rheological behavior and dewaterability remains noncommittal, and the reason is unclear. Herein, a binary gel-like structure model was proposed including the interactions network at the supra-flocs level and the gel-like structure at the flocs level. Multiple advanced techniques including optical tweezers were employed to precisely understand the binary gel-like structure and to classify the correlation mechanism between this gel-like structure, rheological behavior, and dewaterability. The analysis of sludge from eight wastewater treatment plants showed the binary gel-like structures at both supra-flocs and flocs levels have significant relationships with sludge dewaterability (p < 0.05). Further deconstruction of the sludge viscoelastic behavior illustrated that the gel-like structure at the supra-flocs level dominates the rheological behavior of sludge. Moreover, the direct description of the binary gel-like structure in four typical sludge treatment processes highlighted the importance of the flocs level's structure in determining the dewaterability. Overall, this study revealed that shear rheology may prefer to stress the interactions network at the supra-flocs level but mask the flocs level's structure, although the latter is important. This observation may provide a general guideline for the design of robust sensors for dewaterability.
Collapse
Affiliation(s)
- Daxin Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Soil & Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jingjing Wang
- Cell Biology Facility, Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Fan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuting Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Meilin Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Luyao Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Scalvini B, Heling LWHJ, Sheikhhassani V, Sunderlikova V, Tans SJ, Mashaghi A. Cytosolic Interactome Protects Against Protein Unfolding in a Single Molecule Experiment. Adv Biol (Weinh) 2023; 7:e2300105. [PMID: 37409427 DOI: 10.1002/adbi.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Single molecule techniques are particularly well suited for investigating the processes of protein folding and chaperone assistance. However, current assays provide only a limited perspective on the various ways in which the cellular environment can influence the folding pathway of a protein. In this study, a single molecule mechanical interrogation assay is developed and used to monitor protein unfolding and refolding within a cytosolic solution. This allows to test the cumulative topological effect of the cytoplasmic interactome on the folding process. The results reveal a stabilization against forced unfolding for partial folds, which are attributed to the protective effect of the cytoplasmic environment against unfolding and aggregation. This research opens the possibility of conducting single molecule molecular folding experiments in quasi-biological environments.
Collapse
Affiliation(s)
- Barbara Scalvini
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Laurens W H J Heling
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | - Vahid Sheikhhassani
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| | | | - Sander J Tans
- AMOLF, Science Park 104, Amsterdam, 1098 XG, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Faculty of Science, Leiden University, Einsteinweg 55, Leiden, 2333CC, The Netherlands
| |
Collapse
|
7
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023; 20:739-776. [PMID: 37198402 PMCID: PMC10189238 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
8
|
Palacios-García J, Porras-González C, Moreno-Luna R, Maza-Solano J, Polo-Padillo J, Muñoz-Bravo JL, Sánchez-Gómez S. Role of Fibroblasts in Chronic Inflammatory Signalling in Chronic Rhinosinusitis with Nasal Polyps-A Systematic Review. J Clin Med 2023; 12:3280. [PMID: 37176721 PMCID: PMC10179235 DOI: 10.3390/jcm12093280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is an inflammatory disease of the nose and paranasal sinuses characterized by the presence of nasal polyps. The symptoms produced by the presence of nasal polyps such as nasal obstruction, nasal discharge, facial pain, headache, and loss of smell cause a worsening in the quality of life of patients. The source of the nasal polyps remains unclear, although it seems to be due to a chronic inflammation process in the sinonasal mucosa. Fibroblasts, the main cells in connective tissue, are intimately involved in the inflammation processes of various diseases; to this end, we carried out a systematic review to evaluate their inflammatory role in nasal polyps. Thus, we evaluated the main cytokines produced by nasal polyp-derived fibroblasts (NPDF) to assess their involvement in the production of nasal polyps and their involvement in different inflammatory pathways. The results of the review highlight the inflammatory role of NPDF through the secretion of various cytokines involved in the T1, T2, and T3 inflammatory pathways, as well as the ability of NPDF to be stimulated by a multitude of substances. With these findings, the fibroblast is positioned as a new potential therapeutic target in the treatment of CRSwNP.
Collapse
Affiliation(s)
- José Palacios-García
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
| | - Cristina Porras-González
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Doctor Fedriani 3, 41009 Seville, Spain
| | - Ramón Moreno-Luna
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Juan Maza-Solano
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - Juan Polo-Padillo
- Department of Preventive Medicine and Public Health, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
| | - José Luis Muñoz-Bravo
- Clinical Analysis Service, General University Hospital of Elche, Foundation for the Promotion of Health and Biomedical Research in the Valencia Region (FISABIO), Av. De Catalunya 21, 46020 Valencia, Spain
| | - Serafín Sánchez-Gómez
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Virgen Macarena, Doctor Fedriani 3, 41009 Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Campus Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| |
Collapse
|
9
|
Haghizadeh A, Iftikhar M, Dandpat SS, Simpson T. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers. Int J Mol Sci 2023; 24:2668. [PMID: 36768987 PMCID: PMC9916863 DOI: 10.3390/ijms24032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Collapse
|
10
|
Abril AG, Villa TG, Sánchez-Pérez Á, Notario V, Carrera M. The Role of the Gallbladder, the Intestinal Barrier and the Gut Microbiota in the Development of Food Allergies and Other Disorders. Int J Mol Sci 2022; 23:14333. [PMID: 36430811 PMCID: PMC9696009 DOI: 10.3390/ijms232214333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The microbiota present in the gastrointestinal tract is involved in the development or prevention of food allergies and autoimmune disorders; these bacteria can enter the gallbladder and, depending on the species involved, can either be benign or cause significant diseases. Occlusion of the gallbladder, usually due to the presence of calculi blocking the bile duct, facilitates microbial infection and inflammation, which can be serious enough to require life-saving surgery. In addition, the biliary salts are secreted into the intestine and can affect the gut microbiota. The interaction between the gut microbiota, pathogenic organisms, and the human immune system can create intestinal dysbiosis, generating a variety of syndromes including the development of food allergies and autoimmune disorders. The intestinal microbiota can aggravate certain food allergies, which become severe when the integrity of the intestinal barrier is affected, allowing bacteria, or their metabolites, to cross the intestinal barrier and invade the bloodstream, affecting distal body organs. This article deals with health conditions and severe diseases that are either influenced by the gut flora or caused by gallbladder obstruction and inflammation, as well as putative treatments for those illnesses.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Vicente Notario
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council, Marine Research Institute, 36208 Vigo, Spain
| |
Collapse
|
11
|
Histone lysine demethylase inhibition reprograms prostate cancer metabolism and mechanics. Mol Metab 2022; 64:101561. [PMID: 35944897 PMCID: PMC9403566 DOI: 10.1016/j.molmet.2022.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Objective Methods Results Conclusions KDMs inhibition promotes increases H3K4me2 and H3K27me3 in PCa and CRPC, which causes cancer selective pro-apoptotic pathways. KDMs regulate AR expression in PCa and CRPC, reducing ATP production, mitochondrial respiration and intermediate metabolites availability. Epigenetic controls metabolic pathways and redirects lipid metabolic cascade. KDMs inhibition alters lipid distribution and composition, impacting on physical and mechanical properties of PCa and CRPC.
Collapse
|
12
|
Evers TMJ, Sheikhhassani V, Tang H, Haks MC, Ottenhoff THM, Mashaghi A. Single‐Cell Mechanical Characterization of Human Macrophages. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Tom M. J. Evers
- Medical Systems Biophysics and Bioengineering Leiden Academic Centre for Drug Research Faculty of Mathematics and Natural Sciences Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Vahid Sheikhhassani
- Medical Systems Biophysics and Bioengineering Leiden Academic Centre for Drug Research Faculty of Mathematics and Natural Sciences Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Huaqi Tang
- Medical Systems Biophysics and Bioengineering Leiden Academic Centre for Drug Research Faculty of Mathematics and Natural Sciences Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Mariëlle C. Haks
- Department of Infectious Diseases Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases Leiden University Medical Center Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering Leiden Academic Centre for Drug Research Faculty of Mathematics and Natural Sciences Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|