1
|
Lofiego MF, Tufano R, Bello E, Solmonese L, Marzani F, Piazzini F, Celesti F, Caruso FP, Noviello TMR, Mortarini R, Anichini A, Ceccarelli M, Calabrò L, Maio M, Coral S, Di Giacomo AM, Covre A. DNA methylation status classifies pleural mesothelioma cells according to their immune profile: implication for precision epigenetic therapy. J Exp Clin Cancer Res 2025; 44:58. [PMID: 39966970 PMCID: PMC11834541 DOI: 10.1186/s13046-025-03310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Co-targeting of immune checkpoint inhibitors (ICI) CTLA-4 and PD-1 has recently become the new first-line standard of care therapy of pleural mesothelioma (PM) patients, with a significant improvement of overall survival (OS) over conventional chemotherapy. The analysis by tumor histotype demonstrated greater efficacy of ICI therapy compared to standard chemotherapy in non-epithelioid (non-E) vs. epithelioid (E) PM, although some E PM patients also benefit from ICI treatment. This evidence suggests that molecular tumor features, beyond histotype, could be relevant to improve the efficacy of ICI therapy in PM. Among these, tumor DNA methylation emerges as a promising factor to explore, due to its potential role in driving the immune phenotype of cancer cells. Therefore, we utilized a panel of cultured PM cells of different histotype to provide preclinical evidence supporting the role of the tumor methylation landscape, along with its pharmacologic modulation, to prospectively improve the efficacy of ICI therapy of PM patients. METHODS The methylome profile (EPIC array) of distinct E (n = 5) and non-E (n = 9) PM cell lines was analyzed, followed by integrated analysis with their associated transcriptomic profile (Clariom S array), before and after in vitro treatment with the DNA hypomethylating agent (DHA) guadecitabine. The most variable methylated probes were selected to calculate the methylation score (CIMP index) for each cell line at baseline. Genes that were differentially expressed (DE) and differentially methylated (DM) were then selected for gene ontology analysis. RESULTS The CIMP index stratified PM cell lines into two distinct classes, CIMP (hyper-methylated; n = 7) and LOW (hypo-methylated; n = 7), regardless of their E or non-E histotype. Integrated methylome and transcriptome analyses revealed that CIMP PM cells exhibited a substantial number of hyper-methylated, silenced genes, which negatively impacted their immune phenotype compared to LOW PM cells. Treatment with DHA reverted the methylation-driven immune-compromised profile of CIMP PM cells and enhanced the constitutive immune-favorable profile of LOW PM cells. CONCLUSION The study highlighted the relevance of DNA methylation in shaping the constitutive immune classification of PM cells, independent of their histological subtypes. The identified role of DHA in shifting the phenotype of PM cells towards an immune-favorable state highlights its potential for evaluation in phase I/II clinical trials investigating the efficacy of epigenetic-based ICI combinations to reverse cancer immune resistance mechanisms.
Collapse
Affiliation(s)
| | - Rossella Tufano
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | | | - Laura Solmonese
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | | | | | | - Francesca Pia Caruso
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Teresa Maria Rosaria Noviello
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Luana Calabrò
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Division of Medical Oncology, Department of Medical Oncology, University Hospital of Ferrara, Ferrara, Italy
| | - Michele Maio
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | | - Anna Maria Di Giacomo
- University of Siena, Siena, Italy
- Center for Immuno-Oncology, University Hospital of Siena, Siena, Italy
| | | |
Collapse
|
2
|
Tilsed CM, Morales MLO, Zemek RM, Gordon BA, Piggott MJ, Nowak AK, Fisher SA, Lake RA, Lesterhuis WJ. Tretinoin improves the anti-cancer response to cyclophosphamide, in a model-selective manner. BMC Cancer 2024; 24:203. [PMID: 38350880 PMCID: PMC10865642 DOI: 10.1186/s12885-024-11915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Chemotherapy is included in treatment regimens for many solid cancers, but when administered as a single agent it is rarely curative. The addition of immune checkpoint therapy to standard chemotherapy regimens has improved response rates and increased survival in some cancers. However, most patients do not respond to treatment and immune checkpoint therapy can cause severe side effects. Therefore, there is a need for alternative immunomodulatory drugs that enhance chemotherapy. METHODS We used gene expression data from cyclophosphamide (CY) responders and non-responders to identify existing clinically approved drugs that could phenocopy a chemosensitive tumor microenvironment (TME), and tested combination treatments in multiple murine cancer models. RESULTS The vitamin A derivative tretinoin was the top predicted upstream regulator of response to CY. Tretinoin pre-treatment induced an inflammatory, interferon-associated TME, with increased infiltration of CD8 + T cells, sensitizing the tumor to subsequent chemotherapy. However, while combination treatment significantly improved survival and cure rate in a CD4+ and CD8+ T cell dependent manner in AB1-HA murine mesothelioma, this effect was model-selective, and could not be replicated using other cell lines. CONCLUSIONS Despite the promising data in one model, the inability to validate the efficacy of combination treatment in multiple cancer models deprioritizes tretinoin/cyclophosphamide combination therapy for clinical translation.
Collapse
Affiliation(s)
- Caitlin M Tilsed
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | | | - Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia
| | - Brianna A Gordon
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Matthew J Piggott
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, 6009, Nedlands, WA, Australia
| | - Scott A Fisher
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia.
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia.
- Institute for Respiratory Health, 6101, Perth, WA, Australia.
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia.
| |
Collapse
|
3
|
Taniguchi S, Ono Y, Doi Y, Taniguchi S, Matsuura Y, Iwasaki A, Hirata N, Fukuda R, Inoue K, Yamaguchi M, Tashiro A, Egami D, Aoki S, Kondoh Y, Honda K, Osada H, Kumeta H, Saio T, Okiyoneda T. Identification of α-Tocopherol succinate as an RFFL-substrate interaction inhibitor inducing peripheral CFTR stabilization and apoptosis. Biochem Pharmacol 2023; 215:115730. [PMID: 37543348 DOI: 10.1016/j.bcp.2023.115730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
The E3 ubiquitin ligase RFFL is an apoptotic inhibitor highly expressed in cancers and its knockdown suppresses cancer cell growth and sensitizes to chemotherapy. RFFL also participates in peripheral protein quality control which removes the functional cell surface ΔF508-CFTR channel and reduces the efficacy of pharmaceutical therapy for cystic fibrosis (CF). Although RFFL inhibitors have therapeutic potential for both cancer and CF, they remain undiscovered. Here, a chemical array screening has identified α-tocopherol succinate (αTOS) as an RFFL ligand. NMR analysis revealed that αTOS directly binds to RFFL's substrate-binding region without affecting the E3 enzymatic activity. Consequently, αTOS inhibits the RFFL-substrate interaction, ΔF508-CFTR ubiquitination and elimination from the plasma membrane of epithelial cells, resulting in the increased functional CFTR channel. Among the α-tocopherol (αTOL) analogs we tested, only αTOS inhibited the RFFL-substrate interaction and increased the cell surface ΔF508-CFTR, depending on RFFL expression. Similarly, the unique proapoptotic effect of αTOS was dependent on RFFL expression. Thus, unlike other αTOL analogs, αTOS acts as an RFFL protein-protein interaction inhibitor which may explain its unique biological properties among αTOL analogs. Moreover, αTOS may act as a CFTR stabilizer, a novel class of drugs that extend cell surface ΔF508-CFTR lifetime.
Collapse
Affiliation(s)
- Sachiho Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuji Ono
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yukako Doi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Shogo Taniguchi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuta Matsuura
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ayuka Iwasaki
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Keitaro Inoue
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Miho Yamaguchi
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Anju Tashiro
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Daichi Egami
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Shunsuke Aoki
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
| | - Yasumitsu Kondoh
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Kaori Honda
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Unit, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohide Saio
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1337, Japan.
| |
Collapse
|
4
|
Xu JJ, Lucero MY, Herndon NL, Lee MC, Chan J. Comparison of a Minimally Invasive Transthoracic Approach and a Surgical Method For Intrapleural Injection of Tumor Cells in Mice. Comp Med 2023; 73:120-126. [PMID: 36922006 PMCID: PMC10162381 DOI: 10.30802/aalas-cm-22-000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 12/09/2022] [Indexed: 03/17/2023]
Abstract
Intrapleural injections can be used in mice to deliver therapeutic and diagnostic agents and to model human disease processes (for example, pleural fluid accumulation, malignant pleural disease, and lung cancers). In the context of establishing cancer models, minimally invasive methods of intrapleural injection are desirable because inflammation at the injection site can have a major impact on tumor growth and progression. Common approaches for intrapleural injection include surgical exposure of the thoracic wall or the diaphragm prior to injection; however, these invasive procedures require tissue dissection that triggers an undesirable inflammatory response and increases the risk of pneumothorax. While nonsurgical procedures can minimize this concern, 'blind' injections may lead to off-target inoculation. In this study, we hypothesized that a minimally invasive transthoracic approach (MI-TT) would produce a tumor distribution and burden similar to that of a surgical transabdominal approach (SX-TA). Prior to performing the procedures on live mice, surgeons were trained using cadavers and terminal procedures. Then a total of 14 nude mice (female, 4 to 6 wk old) were injected with 50 μL (5 million) A549-Luc2 human cancer cells either using the MI-TT (n = 8) or SX-TA (n = 6) approach under carprofen analgesia and isoflurane anesthesia. Our results indicate that with training, a minimally invasive transthoracic approach for intrapleural injection provides more consistent tumor placement and a greater tumor burden than does the surgical method. However, additional studies are necessary to confirm anatomic placement and characterize tumor profiles.
Collapse
Affiliation(s)
- Jiajie Jessica Xu
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois;,
| | - Melissa Y Lucero
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicole L Herndon
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
5
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Lee YCG, Zemek RM, Bosco A, Lake RA, Lesterhuis WJ. Geldanamycin treatment does not result in anti-cancer activity in a preclinical model of orthotopic mesothelioma. PLoS One 2023; 18:e0274364. [PMID: 37146029 PMCID: PMC10162533 DOI: 10.1371/journal.pone.0274364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/26/2023] [Indexed: 05/07/2023] Open
Abstract
Mesothelioma is characterised by its aggressive invasive behaviour, affecting the surrounding tissues of the pleura or peritoneum. We compared an invasive pleural model with a non-invasive subcutaneous model of mesothelioma and performed transcriptomic analyses on the tumour samples. Invasive pleural tumours were characterised by a transcriptomic signature enriched for genes associated with MEF2C and MYOCD signaling, muscle differentiation and myogenesis. Further analysis using the CMap and LINCS databases identified geldanamycin as a potential antagonist of this signature, so we evaluated its potential in vitro and in vivo. Nanomolar concentrations of geldanamycin significantly reduced cell growth, invasion, and migration in vitro. However, administration of geldanamycin in vivo did not result in significant anti-cancer activity. Our findings show that myogenesis and muscle differentiation pathways are upregulated in pleural mesothelioma which may be related to the invasive behaviour. However, geldanamycin as a single agent does not appear to be a viable treatment for mesothelioma.
Collapse
Affiliation(s)
- M Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Catherine A Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, Western Australia, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Sally M Lansley
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Y C Gary Lee
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Rachael M Zemek
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Richard A Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - W Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
6
|
Fatty Acid Amide Hydrolase Deficiency Is Associated with Deleterious Cardiac Effects after Myocardial Ischemia and Reperfusion in Mice. Int J Mol Sci 2022; 23:ijms232012690. [PMID: 36293543 PMCID: PMC9604059 DOI: 10.3390/ijms232012690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Ischemic cardiomyopathy leads to inflammation and left ventricular (LV) dysfunction. Animal studies provided evidence for cardioprotective effects of the endocannabinoid system, including cardiomyocyte adaptation, inflammation, and remodeling. Cannabinoid type-2 receptor (CB2) deficiency led to increased apoptosis and infarctions with worsened LV function in ischemic cardiomyopathy. The aim of our study was to investigate a possible cardioprotective effect of endocannabinoid anandamide (AEA) after ischemia and reperfusion (I/R). Therefore, fatty acid amide hydrolase deficient (FAAH)−/− mice were subjected to repetitive, daily, 15 min, left anterior descending artery (LAD) occlusion over 3 and 7 consecutive days. Interestingly, FAAH−/− mice showed stigmata such as enhanced inflammation, cardiomyocyte loss, stronger remodeling, and persistent scar with deteriorated LV function compared to wild-type (WT) littermates. As endocannabinoids also activate PPAR-α (peroxisome proliferator-activated receptor), PPAR-α mediated effects of AEA were eliminated with PPAR-α antagonist GW6471 i.v. in FAAH−/− mice. LV function was assessed using M-mode echocardiography. Immunohistochemical analysis revealed apoptosis, macrophage accumulation, collagen deposition, and remodeling. Hypertrophy was determined by cardiomyocyte area and heart weight/tibia length. Molecular analyses involved Taqman® RT-qPCR and immune cells were analyzed with fluorescence-activated cell sorting (FACS). Most importantly, collagen deposition was reduced to WT levels when FAAH−/− mice were treated with GW6471. Chemokine ligand-2 (CCL2) expression was significantly higher in FAAH−/− mice compared to WT, followed by higher macrophage infiltration in infarcted areas, both being reversed by GW6471 treatment. Besides restoring antioxidative properties and contractile elements, PPAR-α antagonism also reversed hypertrophy and remodeling in FAAH−/− mice. Finally, FAAH−/−-mice showed more substantial downregulation of PPAR-α compared to WT, suggesting a compensatory mechanism as endocannabinoids are also ligands for PPAR-α, and its activation causes lipotoxicity leading to cardiomyocyte apoptosis. Our study gives novel insights into the role of endocannabinoids acting via PPAR-α. We hypothesize that the increase in endocannabinoids may have partially detrimental effects on cardiomyocyte survival due to PPAR-α activation.
Collapse
|
7
|
Liu J, Sahin C, Ahmad S, Magomedova L, Zhang M, Jia Z, Metherel AH, Orellana A, Poda G, Bazinet RP, Attisano L, Cummins CL, Peng H, Krause HM. The omega-3 hydroxy fatty acid 7( S)-HDHA is a high-affinity PPARα ligand that regulates brain neuronal morphology. Sci Signal 2022; 15:eabo1857. [PMID: 35857636 DOI: 10.1126/scisignal.abo1857] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) is emerging as an important target in the brain for the treatment or prevention of cognitive disorders. The identification of high-affinity ligands for brain PPARα may reveal the mechanisms underlying the synaptic effects of this receptor and facilitate drug development. Here, using an affinity purification-untargeted mass spectrometry (AP-UMS) approach, we identified an endogenous, selective PPARα ligand, 7(S)-hydroxy-docosahexaenoic acid [7(S)-HDHA]. Results from mass spectrometric detection of 7(S)-HDHA in mouse and rat brain tissues, time-resolved FRET analyses, and thermal shift assays collectively revealed that 7(S)-HDHA potently activated PPARα with an affinity greater than that of other ligands identified to date. We also found that 7(S)-HDHA activation of PPARα in cultured mouse cortical neurons stimulated neuronal growth and arborization, as well as the expression of genes associated with synaptic plasticity. The findings suggest that this DHA derivative supports and enhances neuronal synaptic capacity in the brain.
Collapse
Affiliation(s)
- Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Cigdem Sahin
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Samar Ahmad
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E2
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Minhao Zhang
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Zhengping Jia
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Arturo Orellana
- Department of Chemistry, York University, Toronto, ON M3J 1P3, Canada
| | - Gennady Poda
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
- Drug Discovery, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E2
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|