1
|
Banu S, Anusha PV, Mandal K, Idris MM. Exploration of phosphoproteomic association during epimorphic regeneration. Sci Rep 2025; 15:4854. [PMID: 39924536 PMCID: PMC11808059 DOI: 10.1038/s41598-024-84735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Unravelling the intricate patterns of site-specific protein phosphorylation during Epimorphic regeneration holds the key to unlocking the secrets of tissue complexity. Understanding these precise modifications and their impact on protein function could shed light on the remarkable regenerative capacity of tissues, with potential implications for therapeutic interventions. In this study we have systematically mapped the global phosphorylation modifications within regenerating tissue of zebrafish caudal fins, elucidating the intricate landscape of signalling pathway associate with the regeneration process. Based on mass spectrometry analysis, we identified 440 phosphorylated proteins using the immunoprecipitation method with phosphoserine, phosphothreonine, and phosphotyrosine antibodies, and 74 phosphorylated proteins using the TiO₂ column enrichment method were found differentially phosphorylated during the regeneration process from 12 hpa to 7 dpa compared to the control. Interestingly 95% of the proteins identified from TiO2 enrichment method were also found to be identified through the phosphoprotein antibody pull down method impacting the high accuracy and significance of the methods and greater association of the 70 proteins undergoing differential phosphorylation during the process of regeneration. Whole mount immunohistochemistry analysis reveals high association of phosphorylation at 1dpa, 2dpa and 3dpa regeneration time points. Network pathway analysis revealed that cancer-related diseases, organismal injuries and abnormalities as the most strongly associated canonical network pathways with the differentially expressed phosphoproteome in the mechanism of regeneration. This research enhances our comprehension on protein post-translational modification in the context of zebrafish caudal fin tissue regeneration, shedding light on its prospective application in the field of regenerative medicine.
Collapse
|
2
|
Alvarado K, Tang WJ, Watson CJ, Ahmed AR, Gómez AE, Donaka R, Amemiya C, Karasik D, Hsu YH, Kwon RY. Loss of cped1 does not affect bone and lean tissue in zebrafish. JBMR Plus 2025; 9:ziae159. [PMID: 39776615 PMCID: PMC11701521 DOI: 10.1093/jbmrpl/ziae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Human genetic studies have nominated cadherin-like and PC-esterase domain-containing 1 (CPED1) as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of CPED1 in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of CPED1 in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of cped1 in zebrafish, an emerging model for bone and mineral research. We analyzed two different cped1 mutant lines and performed deep phenotyping to characterize more than 200 measures of adult vertebral, craniofacial, and lean tissue morphology. We also examined alternative splicing of zebrafish cped1 and gene expression in various cell/tissue types. Our studies fail to support an essential role of cped1 in adult zebrafish bone. Specifically, homozygous mutants for both cped1 mutant alleles, which are expected to result in loss-of-function and impact all cped1 isoforms, exhibited no significant differences in the measures examined when compared to their respective wildtype controls, suggesting that cped1 does not significantly contribute to these traits. We identified sequence differences in critical residues of the catalytic triad between the zebrafish and mouse orthologs of CPED1, suggesting that differences in key residues, as well as distinct alternative splicing, could underlie different functions of CPED1 orthologs in the two species. Our studies fail to support a requirement of cped1 in zebrafish bone and lean tissue, adding to evidence that variants at 7q31.31 can act independently of CPED1 to influence BMD and fracture risk.
Collapse
Affiliation(s)
- Kurtis Alvarado
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - W Joyce Tang
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Claire J Watson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Ali R Ahmed
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Arianna Ericka Gómez
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| | - Rajashekar Donaka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 5290002, Israel
| | - Chris Amemiya
- Department of Molecular and Cell Biology and Quantitative and Systems Biology Program, University of California, Merced, CA 95343, United States
| | - David Karasik
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 5290002, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, United States
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, United States
| | - Ronald Young Kwon
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA 98195, United States
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States
| |
Collapse
|
3
|
Chen Y, Hou Y, Zeng Q, Wang I, Shang M, Shin K, Hemauer C, Xing X, Kang J, Zhao G, Wang T. Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution. Genome Res 2025; 35:202-218. [PMID: 39809530 PMCID: PMC11789645 DOI: 10.1101/gr.279372.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins. This map delineates the regulatory dynamics of predominant cell populations at multiple stages of regeneration. We observe a marked increase in the accessibility of chromatin regions associated with regenerative and developmental processes at 1 dpa, followed by a gradual closure across major cell types at later stages. This pattern is distinct from that of transcriptomic dynamics, which is characterized by several waves of gene upregulation and downregulation. We identified and in vivo validated cell-type-specific and position-specific regeneration-responsive enhancers and constructed regulatory networks by cell type and stage. Our single-cell resolution transcriptomic and chromatin accessibility map across regenerative stages provides new insights into regeneration regulatory mechanisms and serves as a valuable resource for the community.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qinglin Zeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meiru Shang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Christopher Hemauer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Martínez-López MF, López-Gil JF. Small Fish, Big Answers: Zebrafish and the Molecular Drivers of Metastasis. Int J Mol Sci 2025; 26:871. [PMID: 39940643 PMCID: PMC11817282 DOI: 10.3390/ijms26030871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer metastasis is a leading cause of cancer-related deaths and represents one of the most challenging processes to study due to its complexity and dynamic nature. Zebrafish (Danio rerio) have become an invaluable model in metastasis research, offering unique advantages such as optical transparency, rapid development, and the ability to visualize tumor interactions with the microenvironment in real time. This review explores how zebrafish models have elucidated the critical steps of metastasis, including tumor invasion, vascular remodeling, and immune evasion, while also serving as platforms for drug testing and personalized medicine. Advances such as patient-derived xenografts and innovative genetic tools have further established zebrafish as a cornerstone in cancer research, particularly in understanding the molecular drivers of metastasis and identifying therapeutic targets. By bridging the experimental findings with clinical relevance, zebrafish continue transforming our understanding of cancer biology and therapy.
Collapse
|
5
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
6
|
Alvarado K, Tang WJ, Watson CJ, Ahmed AR, Gomez AE, Donaka R, Amemiya C, Karasik D, Hsu YH, Kwon RY. Loss of cped1 does not affect bone and lean tissue in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.601974. [PMID: 39026892 PMCID: PMC11257572 DOI: 10.1101/2024.07.10.601974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Human genetic studies have nominated Cadherin-like and PC-esterase Domain-containing 1 (CPED1) as a candidate target gene mediating bone mineral density (BMD) and fracture risk heritability. Recent efforts to define the role of CPED1 in bone in mouse and human models have revealed complex alternative splicing and inconsistent results arising from gene targeting, making its function in bone difficult to interpret. To better understand the role of CPED1 in adult bone mass and morphology, we conducted a comprehensive genetic and phenotypic analysis of cped1 in zebrafish, an emerging model for bone and mineral research. We analyzed two different cped1 mutant lines and performed deep phenotyping to characterize more than 200 measures of adult vertebral, craniofacial, and lean tissue morphology. We also examined alternative splicing of zebrafish cped1 and gene expression in various cell/tissue types. Our studies fail to support an essential role of cped1 in adult zebrafish bone. Specifically, homozygous mutants for both cped1 mutant alleles, which are expected to result in loss-of-function and impact all cped1 isoforms, exhibited no significant differences in the measures examined when compared to their respective wildtype controls, suggesting that cped1 does not significantly contribute to these traits. We identified sequence differences in critical residues of the catalytic triad between the zebrafish and mouse orthologs of CPED1, suggesting that differences in key residues, as well as distinct alternative splicing, could underlie different functions of CPED1 orthologs in the two species. Our studies fail to support a requirement of cped1 in zebrafish bone and lean tissue, adding to evidence that variants at 7q31.31 can act independently of CPED1 to influence BMD and fracture risk.
Collapse
Affiliation(s)
- Kurtis Alvarado
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - W. Joyce Tang
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Claire J. Watson
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ali R. Ahmed
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Arianna Ericka Gomez
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Chris Amemiya
- Department of Molecular and Cell Biology and Quantitative and Systems Biology Program, University of California, Merced, CA, USA
| | - David Karasik
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Ronald Young Kwon
- Department of Orthopaedic Surgery and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Duong P, Rodriguez-Parks A, Kang J, Murphy PJ. CUT&Tag applied to zebrafish adult tail fins reveals a return of embryonic H3K4me3 patterns during regeneration. Epigenetics Chromatin 2024; 17:22. [PMID: 39033118 PMCID: PMC11264793 DOI: 10.1186/s13072-024-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Regenerative potential is governed by a complex process of transcriptional reprogramming, involving chromatin reorganization and dynamics in transcription factor binding patterns throughout the genome. The degree to which chromatin and epigenetic changes contribute to this process remains only partially understood. Here we provide a modified CUT&Tag protocol suitable for improved characterization and interrogation of changes in chromatin modifications during adult fin regeneration in zebrafish. Our protocol generates data that recapitulates results from previously published ChIP-Seq methods, requires far fewer cells as input, and significantly improves signal to noise ratios. We deliver high-resolution enrichment maps for H3K4me3 of uninjured and regenerating fin tissues. During regeneration, we find that H3K4me3 levels increase over gene promoters which become transcriptionally active and genes which lose H3K4me3 become silenced. Interestingly, these reprogramming events recapitulate the H3K4me3 patterns observed in developing fin folds of 24-h old zebrafish embryos. Our results indicate that changes in genomic H3K4me3 patterns during fin regeneration occur in a manner consistent with reactivation of developmental programs, demonstrating CUT&Tag to be an effective tool for profiling chromatin landscapes in regenerating tissues.
Collapse
Affiliation(s)
- Phu Duong
- Department of Biomedical Genetics, University of Rochester, Rochester, USA
| | | | - Junsu Kang
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, USA.
| | - Patrick J Murphy
- Department of Biomedical Genetics, University of Rochester, Rochester, USA.
| |
Collapse
|
8
|
Duong P, Rodriguez-Parks A, Kang J, Murphy PJ. CUT&Tag Applied to Zebrafish Adult Tail Fins Reveals a Return of Embryonic H3K4me3 Patterns During Regeneration. RESEARCH SQUARE 2024:rs.3.rs-4189493. [PMID: 38645155 PMCID: PMC11030498 DOI: 10.21203/rs.3.rs-4189493/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Regenerative potential is governed by a complex process of transcriptional reprogramming, involving chromatin reorganization and dynamics in transcription factor binding patterns throughout the genome. The degree to which chromatin and epigenetic changes contribute to this process remains partially understood. Here we provide a modified CUT&Tag protocol suitable for improved characterization and interrogation of epigenetic changes during adult fin regeneration in zebrafish. Our protocol generates data that recapitulates results from previously published ChIP-Seq methods, requires far fewer cells as input, and significantly improves signal to noise ratios. We deliver high-resolution enrichment maps for H3K4me3 of uninjured and regenerating fin tissues. During regeneration, we find that H3K4me3 levels increase over gene promoters which become transcriptionally active and genes which lose H3K4me3 become silenced. Interestingly, these epigenetic reprogramming events recapitulate the H3K4me3 patterns observed in developing fin folds of 24-hour old zebrafish embryos. Our results indicate that changes in genomic H3K4me3 patterns during fin regeneration occur in a manner consistent with reactivation of developmental programs, demonstrating CUT&Tag to be an effective tool for profiling chromatin landscapes in regenerating tissues.
Collapse
|
9
|
Lewis VM, Le Bleu HK, Henner AL, Markovic H, Robbins AE, Stewart S, Stankunas K. Insulin-like growth factor receptor / mTOR signaling elevates global translation to accelerate zebrafish fin regenerative outgrowth. Dev Biol 2023; 502:1-13. [PMID: 37290497 PMCID: PMC10866574 DOI: 10.1016/j.ydbio.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Zebrafish robustly regenerate fins, including their characteristic bony ray skeleton. Amputation activates intra-ray fibroblasts and dedifferentiates osteoblasts that migrate under a wound epidermis to establish an organized blastema. Coordinated proliferation and re-differentiation across lineages then sustains progressive outgrowth. We generate a single cell transcriptome dataset to characterize regenerative outgrowth and explore coordinated cell behaviors. We computationally identify sub-clusters representing most regenerative fin cell lineages, and define markers of osteoblasts, intra- and inter-ray fibroblasts and growth-promoting distal blastema cells. A pseudotemporal trajectory and in vivo photoconvertible lineage tracing indicate distal blastemal mesenchyme restores both intra- and inter-ray fibroblasts. Gene expression profiles across this trajectory suggest elevated protein production in the blastemal mesenchyme state. O-propargyl-puromycin incorporation and small molecule inhibition identify insulin growth factor receptor (IGFR)/mechanistic target of rapamycin kinase (mTOR)-dependent elevated bulk translation in blastemal mesenchyme and differentiating osteoblasts. We test candidate cooperating differentiation factors identified from the osteoblast trajectory, finding IGFR/mTOR signaling expedites glucocorticoid-promoted osteoblast differentiation in vitro. Concordantly, mTOR inhibition slows but does not prevent fin regenerative outgrowth in vivo. IGFR/mTOR may elevate translation in both fibroblast- and osteoblast-lineage cells during the outgrowth phase as a tempo-coordinating rheostat.
Collapse
Affiliation(s)
- Victor M Lewis
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Heather K Le Bleu
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Astra L Henner
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Hannah Markovic
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Amy E Robbins
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
10
|
Skorentseva KV, Bolshakov FV, Saidova AA, Lavrov AI. Regeneration in calcareous sponge relies on 'purse-string' mechanism and the rearrangements of actin cytoskeleton. Cell Tissue Res 2023; 394:107-129. [PMID: 37466725 DOI: 10.1007/s00441-023-03810-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
The crucial step in any regeneration process is epithelization, i.e. the restoration of an epithelium structural and functional integrity. Epithelization requires cytoskeletal rearrangements, primarily of actin filaments and microtubules. Sponges (phylum Porifera) are early branching metazoans with pronounced regenerative abilities. Calcareous sponges have a unique step during regeneration: the formation of a temporary structure, called regenerative membrane which initially covers a wound. It forms due to the morphallactic rearrangements of exopinaco- and choanoderm epithelial-like layers. The current study quantitatively evaluates morphological changes and characterises underlying actin cytoskeleton rearrangements during regenerative membrane formation in asconoid calcareous sponge Leucosolenia variabilis through a combination of time-lapse imaging, immunocytochemistry, and confocal laser scanning microscopy. Regenerative membrane formation has non-linear stochastic dynamics with numerous fluctuations. The pinacocytes at the leading edge of regenerative membrane form a contractile actomyosin cable. Regenerative membrane formation either depends on its contraction or being coordinated through it. The cell morphology changes significantly during regenerative membrane formation. Exopinacocytes flatten, their area increases, while circularity decreases. Choanocytes transdifferentiate into endopinacocytes, losing microvillar collar and flagellum. Their area increases and circularity decreases. Subsequent redifferentiation of endopinacocytes into choanocytes is accompanied by inverse changes in cell morphology. All transformations rely on actin filament rearrangements similar to those characteristic of bilaterian animals. Altogether, we provide here a qualitative and quantitative description of cell transformations during reparative epithelial morphogenesis in a calcareous sponge.
Collapse
Affiliation(s)
- Kseniia V Skorentseva
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Fyodor V Bolshakov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| | - Alina A Saidova
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russia
| | - Andrey I Lavrov
- Pertsov White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, 1 Build. 12, Moscow, 119234, Russia
| |
Collapse
|
11
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
12
|
Johnson GL, Glasser MB, Charles JF, Duryea J, Lehoczky JA. En1 and Lmx1b do not recapitulate embryonic dorsal-ventral limb patterning functions during mouse digit tip regeneration. Cell Rep 2022; 41:111701. [PMID: 36417876 PMCID: PMC9727699 DOI: 10.1016/j.celrep.2022.111701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The mouse digit tip regenerates following amputation. How the regenerate is patterned is unknown, but a long-standing hypothesis proposes developmental patterning mechanisms are re-used during regeneration. The digit tip bone exhibits dorsal-ventral (DV) polarity, so we focus on En1 and Lmx1b, two factors necessary for DV patterning during limb development. We investigate whether they are re-expressed during regeneration in a developmental-like pattern and whether they direct DV morphology of the regenerate. We find that both En1 and Lmx1b are expressed in the regenerating digit tip epithelium and mesenchyme, respectively, but without DV polarity. Conditional genetics and quantitative analysis of digit tip bone morphology determine that genetic deletion of En1 or Lmx1b in adult digit tip regeneration modestly reduces bone regeneration but does not affect DV patterning. Collectively, our data suggest that, while En1 and Lmx1b are re-expressed during mouse digit tip regeneration, they do not define the DV axis during regeneration.
Collapse
Affiliation(s)
- Gemma L. Johnson
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Morgan B. Glasser
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Julia F. Charles
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jeffrey Duryea
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Lead contact,Correspondence:
| |
Collapse
|
13
|
Watson CJ, Tang WJ, Rojas MF, Fiedler IAK, Morfin Montes de Oca E, Cronrath AR, Callies LK, Swearer AA, Ahmed AR, Sethuraman V, Addish S, Farr GH, Gómez AE, Rai J, Monstad-Rios AT, Gardiner EM, Karasik D, Maves L, Busse B, Hsu YH, Kwon RY. wnt16 regulates spine and muscle morphogenesis through parallel signals from notochord and dermomyotome. PLoS Genet 2022; 18:e1010496. [PMID: 36346812 PMCID: PMC9674140 DOI: 10.1371/journal.pgen.1010496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Bone and muscle are coupled through developmental, mechanical, paracrine, and autocrine signals. Genetic variants at the CPED1-WNT16 locus are dually associated with bone- and muscle-related traits. While Wnt16 is necessary for bone mass and strength, this fails to explain pleiotropy at this locus. Here, we show wnt16 is required for spine and muscle morphogenesis in zebrafish. In embryos, wnt16 is expressed in dermomyotome and developing notochord, and contributes to larval myotome morphology and notochord elongation. Later, wnt16 is expressed at the ventral midline of the notochord sheath, and contributes to spine mineralization and osteoblast recruitment. Morphological changes in wnt16 mutant larvae are mirrored in adults, indicating that wnt16 impacts bone and muscle morphology throughout the lifespan. Finally, we show that wnt16 is a gene of major effect on lean mass at the CPED1-WNT16 locus. Our findings indicate that Wnt16 is secreted in structures adjacent to developing bone (notochord) and muscle (dermomyotome) where it affects the morphogenesis of each tissue, thereby rendering wnt16 expression into dual effects on bone and muscle morphology. This work expands our understanding of wnt16 in musculoskeletal development and supports the potential for variants to act through WNT16 to influence bone and muscle via parallel morphogenetic processes.
Collapse
Affiliation(s)
- Claire J. Watson
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - W. Joyce Tang
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Maria F. Rojas
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ernesto Morfin Montes de Oca
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Andrea R. Cronrath
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Lulu K. Callies
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Avery Angell Swearer
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Ali R. Ahmed
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Visali Sethuraman
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Sumaya Addish
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Gist H. Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Arianna Ericka Gómez
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Jyoti Rai
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Adrian T. Monstad-Rios
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - Edith M. Gardiner
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| | - David Karasik
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, United States of America
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, Division of Cardiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Bjorn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yi-Hsiang Hsu
- Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Insitute for Stem Cell and Regenerative Medicines, University of Washington, Seattle Washington, United States of America
| |
Collapse
|