1
|
Qiu L, Polo-Garzon F, Daemen LL, Kim MJ, Guo J, Sumpter BG, Koehler MR, Steren CA, Wang T, Kearney LT, Saito T, Yang Z, Dai S. Polyethylene Upcycling to Liquid Alkanes in Molten Salts under Neat and External Hydrogen Source-Free Conditions. J Am Chem Soc 2025; 147:16207-16216. [PMID: 40193532 DOI: 10.1021/jacs.5c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Development of facile approaches to convert plastic waste into liquid fuels under neat conditions is highly desired but challenging, particularly without noble metal catalysts and an external hydrogen source. Herein, highly efficient and selective polyethylene-to-gasoline oil (branched C6-C12 alkanes) conversion was achieved under mild conditions (<170 °C) using commercially available AlCl3-containing molten salts as reaction media and to provide catalytic sites (no extra solvents, additives, or hydrogen feeding). The high catalytic efficiency and selectivity was ensured by the abundant active Al sites with strong Lewis acidity (comparable to the Al type in acidic zeolite) and highly ionic nature of the molten salts to stabilize the carbenium intermediates. Dynamic genesis of the Al sites was elucidated via time-resolved Al K-edge soft X-ray and 27Al NMR, confirming the tricoordinated Al3+ as active sites and its coordination with the as-generated alkene/aromatic intermediates. The carbenium formation and polyethylene chain variation was illustrated by inelastic neutron scattering (INS) and an isotope-labeling experiment. Theoretical simulations further demonstrated the successive hydride abstraction, β-scission, isomerization, and internal hydrogen transfer reaction pathway with AlCl3 as active sites. This facile catalytic system can further achieve the conversion of robust, densely assembled, and high molecular weight plastic model compounds to liquid alkane products in the diesel range.
Collapse
Affiliation(s)
- Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Luke L Daemen
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Min-Jae Kim
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael R Koehler
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Carlos Alberto Steren
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Logan T Kearney
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Zhang N, Li H, Ye C, Qiao SZ. Mechanical Homogenization Promoting Dual-Directional Upcycling of Layered Oxide Cathodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504380. [PMID: 40296558 DOI: 10.1002/adma.202504380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Upcycling is regarded as a sustainable and promising recycling solution for spent lithium-ion batteries (LIBs). However, current upcycling strategies such as converting Ni-lean to Ni-rich cathodes struggle to change the composition of the spent cathodes to meet the diverse market demands. In addition, the commonly employed molten-salts method requires tens of hours of high-temperature treatment, restricting its sustainability. Herein, this study reports an efficient, flexible dual-directional upcycling strategy to upcycle a broad family of layered oxide cathodes into fresh LiNixCoyMnzO2 (NCM) cathodes with tailored Ni-contents-either increased or decreased-in just 4 h via mechanical homogenization pretreatment. This study confirms that the bulk diffusion of transition metals (TMs) is the rate-determining step in the resynthesis process, and the mechanical homogenization can shorten the diffusion pathway of TMs, thus reducing the sintering duration effectively. The as-upcycled NCM cathodes can deliver electrochemical performance on par with commercial counterparts. Notably, a systematic technoeconomic analysis shows that upcycling spent LiCoO2 into NCM622 can yield a profit up to 35 US$/kg, 30% higher than the conventional acid-leaching resynthesis approach. This work provides an energy-saving, widely adaptable, flexible, and cost-efficient method for regenerating spent cathode materials, paving the way for the sustainable recycling of LIBs.
Collapse
Affiliation(s)
- Nianji Zhang
- School of Chemical Engineering, the University of Adelaide, Adelaide, SA, 5005, Australia
| | - Huan Li
- School of Chemical Engineering, the University of Adelaide, Adelaide, SA, 5005, Australia
| | - Chao Ye
- School of Chemical Engineering, the University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, the University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Wang R, Li Q, Wang F, Ding J, An B, Ruan J, Sun D, Fang F, Wang F. One-Step Molten-Salt-Assisted Approach for Direct Preparation and Regeneration of LiNi 0.6Co 0.2Mn 0.2O 2 Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400762. [PMID: 38794872 DOI: 10.1002/smll.202400762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Single-crystal lithium-nickel-manganese-cobalt-oxide (SC-NMC) is attracting increasing attention due to its excellent structural stability. However, its practical production faces challenges associated with complex precursor preparation processes and severe lithium-nickel cation mixing at high temperatures, which restricts its widespread application. Here, a molten-salt-assisted method is proposed using low-melting-point carbonates. This method obviates the necessity for precursor processes and simplified the synthetic procedure for SC-NMC down to a single isothermal sintering step. Multiple characterizations indicate that the acquired SC-LiNi0.6Mn0.2Co0.2O2 (SC-622) exhibits favorable structural capability against intra-granular fracture and suppressive Li+/Ni2+ cation mixing. Consequently, the SC-622 exhibits superior electrochemical performance with a high initial specific capacity (174 mAh g-1 at 0.1 C, 3.0-4.3 V) and excellent capacity retention (87.5% after 300 cycles at 1C). Moreover, this molten-salt-assisted method exhibits its effectiveness in directly regenerating SC-622 from spent NMC materials. The recovered material delivered a capacity of 125.4 mAh g-1 and retained 99.4% of the initial capacity after 250 cycles at 1 C. This work highlights the importance of understanding the process-structure-property relationships and can broadly guide the synthesis of other SC Ni-rich cathode materials.
Collapse
Affiliation(s)
- Runting Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Qin Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Fengmei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Jibo Ding
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Baihong An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiafeng Ruan
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
4
|
Ma J, Wang J, Jia K, Liang Z, Ji G, Ji H, Zhu Y, Chen W, Cheng HM, Zhou G. Subtractive transformation of cathode materials in spent Li-ion batteries to a low-cobalt 5 V-class cathode material. Nat Commun 2024; 15:1046. [PMID: 38316784 PMCID: PMC10844610 DOI: 10.1038/s41467-024-45091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Adding extra raw materials for direct recycling or upcycling is prospective for battery recycling, but overlooks subtracting specific components beforehand can facilitate the recycling to a self-sufficient mode of sustainable production. Here, a subtractive transformation strategy of degraded LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 to a 5 V-class disordered spinel LiNi0.5Mn1.5O4-like cathode material is proposed. Equal amounts of Co and Ni from degraded materials are selectively extracted, and the remaining transition metals are directly converted into Ni0.4Co0.1Mn1.5(CO3)2 precursor for preparing cathode material with in-situ Co doping. The cathode material with improved conductivity and bond strength delivers high-rate (10 C and 20 C) and high-temperature (60 °C) cycling stability. This strategy with no extra precursor input can be generalized to practical degraded black mass and reduces the dependence of current cathode production on rare elements, showing the potential of upcycling from the spent to a next-generation 5 V-class cathode material for the sustainable Li-ion battery industry.
Collapse
Affiliation(s)
- Jun Ma
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Junxiong Wang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kai Jia
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanjun Ji
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haocheng Ji
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanfei Zhu
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wen Chen
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China.
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Lan Y, Li X, Zhou G, Yao W, Cheng H, Tang Y. Direct Regenerating Cathode Materials from Spent Lithium-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304425. [PMID: 37955914 PMCID: PMC10767406 DOI: 10.1002/advs.202304425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Indexed: 11/14/2023]
Abstract
Recycling cathode materials from spent lithium-ion batteries (LIBs) is critical to a sustainable society as it will relief valuable but scarce recourse crises and reduce environment burdens simultaneously. Different from conventional hydrometallurgical and pyrometallurgical recycling methods, direct regeneration relies on non-destructive cathode-to-cathode mode, and therefore, more time and energy-saving along with an increased economic return and reduced CO2 footprint. This review retrospects the history of direct regeneration and discusses state-of-the-art development. The reported methods, including high-temperature solid-state, hydrothermal/ionothermal, molten salt thermochemistry, and electrochemical method, are comparatively introduced, targeting at illustrating their underlying regeneration mechanism and applicability. Further, representative repairing and upcycling studies on wide-applied cathodes, including LiCoO2 (LCO), ternary oxides, LiFePO4 (LFP), and LiMn2 O4 (LMO), are presented, with an emphasis on milestone cases. Despite these achievements, there remain several critical issues that shall be addressed before the commercialization of the mentioned direct regeneration methods.
Collapse
Affiliation(s)
- Yuanqi Lan
- Advanced Energy Storage Technology Research CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of SciencesShenzhen518055China
| | - Xinke Li
- Advanced Energy Storage Technology Research CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhou215123China
| | - Guangmin Zhou
- Shenzhen Geim Graphene CenterTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Wenjiao Yao
- Advanced Energy Storage Technology Research CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Shenzhen Key Laboratory of Energy Materials for Carbon NeutralityShenzhen518055China
| | - Hui‐Ming Cheng
- Shenzhen Key Laboratory of Energy Materials for Carbon NeutralityShenzhen518055China
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon NeutralityShenzhen Institute of Advanced TechnologyChinese Academy of Sciences ShenzhenShenzhen518055P. R. China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of SciencesShenzhen518055China
| |
Collapse
|
6
|
Ji H, Wang J, Ma J, Cheng HM, Zhou G. Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem Soc Rev 2023; 52:8194-8244. [PMID: 37886791 DOI: 10.1039/d3cs00254c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Advancement in energy storage technologies is closely related to social development. However, a significant conflict has arisen between the explosive growth in battery demand and resource availability. Facing the upcoming large-scale disposal problem of spent lithium-ion batteries (LIBs), their recycling technology development has become key. Emerging direct recycling has attracted widespread attention in recent years because it aims to 'repair' the battery materials, rather than break them down and extract valuable products from their components. To achieve this goal, a profound understanding of the failure mechanisms of spent LIB electrode materials is essential. This review summarizes the failure mechanisms of LIB cathode and anode materials and the direct recycling strategies developed. We systematically explore the correlation between the failure mechanism and the required repair process to achieve efficient and even upcycling of spent LIB electrode materials. Furthermore, we systematically introduce advanced in situ characterization techniques that can be utilized for investigating direct recycling processes. We then compare different direct recycling strategies, focussing on their respective advantages and disadvantages and their applicability to different materials. It is our belief that this review will offer valuable guidelines for the design and selection of LIB direct recycling methods in future endeavors. Finally, the opportunities and challenges for the future of battery direct recycling technology are discussed, paving the way for its further development.
Collapse
Affiliation(s)
- Haocheng Ji
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Junxiong Wang
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Ma
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering & Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Zhang L, Zhang Y, Xu Z, Zhu P. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13270-13291. [PMID: 37610371 DOI: 10.1021/acs.est.3c01369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
With the rise of the new energy vehicle industry represented by Tesla and BYD, the need for lithium-ion batteries (LIBs) grows rapidly. However, owing to the limited service life of LIBs, the large-scale retirement tide of LIBs has come. The recycling of spent LIBs has become an inevitable trend of resource recovery, environmental protection, and social demand. The low added value recovery of previous LIBs mostly used traditional metal extraction, which caused environmental damage and had high cost. Beyond metal extraction, the upcycling of spent LIBs came into being. In this work, we have outlined and particularly focus on sustainable upcycling technologies of toxic electrolyte, cathode, and anode from spent LIBs. For electrolyte, whether electrolyte extraction or decomposition, restoring the original electrolyte components or decomposing them into low-carbon energy conversion is the goal of electrolyte upcycling. Direct regeneration and preparation of advanced materials are the best strategies for cathodic upcycling with the advantages of cost and energy consumption, but challenges remain in industrial practice. The regeneration of advanced graphite-based materials and battery-grade graphite shows us the prospect of regeneration of anode. Furthermore, the challenges and future development of spent LIBs upcycling are summarized and discussed from technological and environmental perspectives.
Collapse
Affiliation(s)
- Lingen Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ping Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Chen Z, Feng R, Wang W, Tu S, Hu Y, Wang X, Zhan R, Wang J, Zhao J, Liu S, Fu L, Sun Y. Reaction-passivation mechanism driven materials separation for recycling of spent lithium-ion batteries. Nat Commun 2023; 14:4648. [PMID: 37532688 PMCID: PMC10397256 DOI: 10.1038/s41467-023-40369-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Development of effective recycling strategies for cathode materials in spent lithium-ion batteries are highly desirable but remain significant challenges, among which facile separation of Al foil and active material layer of cathode makes up the first important step. Here, we propose a reaction-passivation driven mechanism for facile separation of Al foil and active material layer. Experimentally, >99.9% separation efficiency for Al foil and LiNi0.55Co0.15Mn0.3O2 layer is realized for a 102 Ah spent cell within 5 mins, and ultrathin, dense aluminum-phytic acid complex layer is in-situ formed on Al foil immediately after its contact with phytic acid, which suppresses continuous Al corrosion. Besides, the dissolution of transitional metal from LiNi0.55Co0.15Mn0.3O2 is negligible and good structural integrity of LiNi0.55Co0.15Mn0.3O2 is well-maintained during the processing. This work demonstrates a feasible approach for Al foil-active material layer separation of cathode and can promote the green and energy-saving battery recycling towards practical applications.
Collapse
Affiliation(s)
- Zihe Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruikang Feng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenyu Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuibin Tu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yang Hu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiancheng Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Renming Zhan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | - Lin Fu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yongming Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
9
|
Wang T, Gaugler JA, Li M, Thapaliya BP, Fan J, Qiu L, Moitra D, Kobayashi T, Popovs I, Yang Z, Dai S. Construction of Fluorine- and Piperazine-Engineered Covalent Triazine Frameworks Towards Enhanced Dual-Ion Positive Electrode Performance. CHEMSUSCHEM 2023; 16:e202201219. [PMID: 35996839 DOI: 10.1002/cssc.202201219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Organic positive electrodes featuring lightweight and tunable energy storage modes by molecular structure engineering have promising application prospects in dual-ion batteries. Herein, a series of highly porous covalent triazine frameworks (CTFs) were synthesized under ionothermal conditions using fluorinated aromatic nitrile monomers containing a piperazine ring. Fluorinated monomers can result in more defects in CTFs, leading to a higher surface area up to 2515 m2 g-1 and a higher N content of 11.34 wt % compared to the products from the non-fluorinated monomer. The high surface area and abundant redox sites of these CTFs afforded high specific capacities (up to 279 mAh g-1 at 0.1 A g-1 ), excellent rate performance (89 mAh g-1 at 5 A g-1 ), and durable cycling performance (92.3 % retention rate after 500 cycles at 2.0 A g-1 ) as dual-ion positive electrodes.
Collapse
Affiliation(s)
- Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James Anthony Gaugler
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| | - Meijia Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Juntian Fan
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| | - Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| | - Debabrata Moitra
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| | - Takeshi Kobayashi
- U.S. DoE Ames National Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| |
Collapse
|
10
|
Yu X, Li W, Gupta V, Gao H, Tran D, Sarwar S, Chen Z. Current Challenges in Efficient Lithium-Ion Batteries' Recycling: A Perspective. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200099. [PMID: 36532242 PMCID: PMC9749077 DOI: 10.1002/gch2.202200099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Indexed: 05/19/2023]
Abstract
Li-ion battery (LIB) recycling has become an urgent need with rapid prospering of the electric vehicle (EV) industry, which has caused a shortage of material resources and led to an increasing amount of retired batteries. However, the global LIB recycling effort is hampered by various factors such as insufficient logistics, regulation, and technology readiness. Here, the challenges associated with LIB recycling and their possible solutions are summarized. Different aspects such as recycling/upcycling techniques, worldwide government policies, and the economic and environmental impacts are discussed, along with some practical suggestions to overcome these challenges for a promising circular economy for LIB materials. Some potential strategies are proposed to convert such challenges into opportunities to maintain the global expansion of the EV and other LIB-dependent industries.
Collapse
Affiliation(s)
- Xiaolu Yu
- Program of Materials ScienceUniversity of California, San DiegoLa JollaCA92093USA
| | - Weikang Li
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Varun Gupta
- Program of Materials ScienceUniversity of California, San DiegoLa JollaCA92093USA
| | - Hongpeng Gao
- Program of Materials ScienceUniversity of California, San DiegoLa JollaCA92093USA
| | - Duc Tran
- Program of Chemical EngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Shatila Sarwar
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
| | - Zheng Chen
- Program of Materials ScienceUniversity of California, San DiegoLa JollaCA92093USA
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Program of Chemical EngineeringUniversity of California, San DiegoLa JollaCA92093USA
- Sustainable Power and Energy CenterUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|