1
|
Nagib M, Sayed AM, Korany AH, Abdelkader K, Shari FH, Mackay WG, Rateb ME. Human Defensins: Structure, Function, and Potential as Therapeutic Antimicrobial Agents with Highlights Against SARS CoV-2. Probiotics Antimicrob Proteins 2025; 17:1563-1583. [PMID: 39693007 PMCID: PMC12055905 DOI: 10.1007/s12602-024-10436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
The human defensins are a group of cationic antimicrobial peptides that range in size from 2 to 5 kDa and share a common structural motif of six disulphide-linked cysteines. Several naturally occurring human α- and β-defensins have been identified over the past two decades. They have a wide variety of antimicrobial effects, and their potential to avoid the development of resistance to antimicrobial treatment makes them attractive as therapeutic agents. Human defensins have recently been the focus of medical and molecular biology studies due to their promising application in medicine and the pharmaceutical industry. This work aims to provide a comprehensive summary of the current developments of human defensins, including their identification, categorization, molecular features, expression, modes of action, and potential application in medical settings. Current obstacles and future opportunities for using human defensins are also covered. Furthermore, we shed light on the potential of this class as an antiviral agent, particularly against SARS CoV-2, by providing an in silico-based investigation of their plausible mechanisms of action.
Collapse
Affiliation(s)
- Maryam Nagib
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK
| | - Ahmed M Sayed
- Department of Pharmacognosy, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - Ahmed H Korany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Nahda University, Beni Suef, 62513, Egypt
| | - Karim Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Falah H Shari
- Department of Clinical Biochemistry, College of Pharmacy, Almaaqal University, Basrah, 61014, Iraq
| | - William G Mackay
- School of Health and Life Sciences, University of the West of Scotland, Blantyre, Glasgow, G72 0LH, UK
| | - Mostafa E Rateb
- School of Computing Engineering and Physical Sciences, University of the West of Scotland, Paisley, Scotland, PA12BE, UK.
| |
Collapse
|
2
|
Hewison M. COVID-19 and our understanding of vitamin D and immune function. J Steroid Biochem Mol Biol 2025; 249:106710. [PMID: 39986580 DOI: 10.1016/j.jsbmb.2025.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The interaction between vitamin D and the immune system is perhaps the most well recognised extraskeletal facet of vitamin D, encompassing early studies of therapy for TB and leprosy through to more recent links with autoimmune disease. However, the spotlight on vitamin D and immune function has been particularly intense in the last five years following the COVID-19 pandemic. This was due, in part, to the many association studies of vitamin D status and COVID-19 infection and disease prognosis, as well as the smaller number of clinical trials of vitamin D supplementation. However, a potential role for vitamin D in COVID-19 also stemmed from the basic biology of vitamin D that provides a plausible mechanistic rationale for beneficial effects of vitamin D for improved immune health in the setting of respiratory infection. The aim of this review is to summarise the different strands of mechanistic evidence supporting a beneficial effect of vitamin D in COVID-19, how this was modified during the pandemic itself, and the potential new aspects of vitamin D and immune function that are likely to arise in the near future. Key topics that feature in this review are: antibacterial versus antiviral innate immune responses to 1,25-dihydroxyvitamin D (1,25(OH)2D); the function of immune 1α-hydroxylase (CYP27B1) activity and metabolism of 25-hydroxyvitamin D (25(OH)D) beyond antigen-presenting cells; advances in immune cell target gene responses to 1,25-dihydroxyvitamin D (notably changes in metabolic profile). Whilst much of the interest during the COVID-19 era has focused on vitamin D and public health, the continued evolution of our understanding of how vitamin D interacts with different components of the immune system continues to support a beneficial role for vitamin D in immune health.
Collapse
Affiliation(s)
- Martin Hewison
- Department of Metabolism and Systems Science, School of Medical Sciences, University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TT, UK.
| |
Collapse
|
3
|
Liao J, Deng S, Shi B, Wang M, Yin Y, Cao Y, Liu R, Huang X, Jiang L, Shi Q. HPV16 E7 inhibits HBD2 expression by down-regulation of ASK1-p38 MAPK pathway in cervical cancer. Virol J 2025; 22:109. [PMID: 40253372 PMCID: PMC12008847 DOI: 10.1186/s12985-025-02731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/09/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Recent researches indicated a down-regulation of Human beta-defensin2 (HBD2) expression in cervical cancer cells, but the mechanism and clinical significance is not clear yet. METHODS In this paper, based on the data from the TCGA database, the bioinformatics analysis provided by the UALCAN server was used. The HBD2 mRNA levels were tested with RT-qPCR in cells and protein concentration in cell cultural supernatant was assayed with ELISA. When the gene of Human papillomavirus type 16 E7 oncoprotein (HPV16 E7) overexpression or knockdown, the protein expression of ASK1 and p38 MAPK was detected by Western blot. RESULTS The bioinformatics analysis results implied that mRNA levels of HBD2 in cervical cancer were lower obviously than healthy people. HBD2 mRNA levels and protein in CaSki and SiHa cells increased obviously under the condition of HPV16 E7 gene silence. However, HBD2 mRNA and protein levels decreased significantly in C33A and CaCo2 cells not only under the conditions of treatment with HPV16 E7 gene overexpression, but also the inhibition of ASK1-p38 MAPK pathway by SB-203580 or GS-4997, or shRNA expression plasmid of ASK1 transefction. Moreover, p-ASK1(Thr845), the activity forming protein of ASK1, and p-p38, decreased in C33A and CaCo2 cells accompanied with HPV16 E7 overexpression, while p-ASK1(Ser966) protein, an inhibitory forming protein kept in a same stable levels. The completely opposite patterns of the protein expression in ASK1-p38 MAPK pathway were obtained in CaSki and SiHa cells transfected with HPV16 E7 siRNA sequence. Interestingly, statistical higher levels of phosphorylated p38 and cellular apoptosis rates, were found in SiHa cells exposed in Anisomycin than in DMSO solution. And increased HBD2 protein concentration in cell cultural supernatant and decreased cell survial rates, were confirmed in CaSki and SiHa cells treatment with Anisomycin, at the same time. CONCLUSIONS Our results implied that HPV16 E7 suppresses HBD2 expression via the inhibition of the ASK1-p38 MAPK signaling pathway, and this mechanism might be a key way of anti-tumor effect of Anisomycin. This study provided a novel insight into the expression and regulation mechanism of HBD2 in tumors and offered a possible therapeutic strategy by using defensins for cervical cancer in future.
Collapse
Grants
- 30760280, 81760472 National Natural Science Foundation of China
- 30760280, 81760472 National Natural Science Foundation of China
- 202130621 Health Commission Project of Jiangxi Province,China
- 202130621 Health Commission Project of Jiangxi Province,China
- 202130621 Health Commission Project of Jiangxi Province,China
- 20181BAB205064 Natural Science Funding of Jiangxi province, China
- 20181BAB205064 Natural Science Funding of Jiangxi province, China
- 20181BAB205064 Natural Science Funding of Jiangxi province, China
- 20181BAB205064 Natural Science Funding of Jiangxi province, China
- 20181BAB205064 Natural Science Funding of Jiangxi province, China
- 20181BAB205064 Natural Science Funding of Jiangxi province, China
- 20181BAB205064 Natural Science Funding of Jiangxi province, China
- 20181BAB205064 Natural Science Funding of Jiangxi province, China
- 20181BAB205064 Natural Science Funding of Jiangxi province, China
Collapse
Affiliation(s)
- Juanjuan Liao
- Department of Medical Microbiology & Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Shanshan Deng
- Department of Medical Microbiology & Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Bowen Shi
- The First Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Meizhen Wang
- the hospital of Nanchang University, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yingying Yin
- the hospital of Nanchang University, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yanli Cao
- Department of Medical Microbiology & Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Renping Liu
- Department of Medical Microbiology & Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaotian Huang
- Department of Medical Microbiology & Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Qiaofa Shi
- Department of Medical Microbiology & Immunology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
4
|
Jahan I, Zhang L. Exploring the Interaction of RBD with Human β Defensin Type 2 Point Mutants: Insights from Molecular Dynamics Simulations. J Phys Chem B 2025; 129:1927-1933. [PMID: 39929747 DOI: 10.1021/acs.jpcb.4c07004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The global health crisis triggered by the SARS-CoV-2 virus has highlighted the urgent need for effective treatments. As existing drugs are not specifically targeted at this virus, there is a growing interest in exploring natural antimicrobial peptides such as defensin as potential therapeutic options. Human β defensin type 2 (hBD-2), which is a cationic cysteine-rich peptide, serves as the initial barrier against bacterial and fungal invaders in mammals. It can bind with Spike-RBD and occupy the same site as the ACE2 receptor, thereby hindering viral entry into cells expressing ACE2. To explore the effect of different point mutations on the binding of hBD-2 with RBD, the binding dynamics and interactions between hBD-2 point mutants with RBD were studied and compared with that of RBD&hBD-2 wild-type complex. In total, 247 hBD-2 point mutants were built with the mutation sites at the binding region of hBD-2 (RES18-30) with the RBD of CoV-2. All-atom molecular dynamics simulations were carried out on RBD binding with hBD-2 point mutants. Analysis based on root-mean-square deviation (RMSD), hydrogen bonds analysis, and binding free energy using the MM/PBSA method revealed that many point mutants of hBD-2 exhibit weaker binding with RBD compared to the wild type; however, a subset of mutants, including C20I, C20K, R22W, R23H, R23L, Y24L, K25F, K25H, G28Y, T29R, and C30K, displayed enhanced binding with RBD. The findings can offer insights designing hBD-2-based novel drugs to combat SARS-CoV-2 in the long term.
Collapse
Affiliation(s)
- Ishrat Jahan
- Chemical Engineering Department, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
5
|
Chen M, Hu Z, Shi J, Xie Z. Human β-defensins and their synthetic analogs: Natural defenders and prospective new drugs of oral health. Life Sci 2024; 346:122591. [PMID: 38548013 DOI: 10.1016/j.lfs.2024.122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
As a family of cationic host defense peptides, human β-defensins (HBDs) are ubiquitous in the oral cavity and are mainly synthesized primarily by epithelial cells, serving as the primary barrier and aiming to prevent microbial invasion, inflammation, and disease while maintaining physiological homeostasis. In recent decades, there has been great interest in their biological functions, structure-activity relationships, mechanisms of action, and therapeutic potential in oral diseases. Meanwhile, researchers are dedicated to improving the properties of HBDs for clinical application. In this review, we first describe the classification, structural characteristics, functions, and mechanisms of HBDs. Next, we cover the role of HBDs and their synthetic analogs in oral diseases, including dental caries and pulp infections, periodontitis, peri-implantitis, fungal/viral infections and oral mucosal diseases, and oral squamous cell carcinoma. Finally, we discuss the limitations and challenges of clinical translation of HBDs and their synthetic analogs, including, but not limited to, stability, bioavailability, antimicrobial activity, resistance, and toxicity. Above all, this review summarizes the biological functions, mechanisms of action, and therapeutic potential of both natural HBDs and their synthetic analogs in oral diseases, as well as the challenges associated with clinical translation, thus providing substantial insights into the laboratory development and clinical application of HBDs in oral diseases.
Collapse
Affiliation(s)
- Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
6
|
Kong X, Wang W, Zhong Y, Wang N, Bai K, Wu Y, Qi Q, Zhang Y, Liu X, Xie J. Recent advances in the exploration and discovery of SARS-CoV-2 inhibitory peptides from edible animal proteins. Front Nutr 2024; 11:1346510. [PMID: 38389797 PMCID: PMC10883054 DOI: 10.3389/fnut.2024.1346510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), is spreading worldwide. Although the COVID-19 epidemic has passed its peak of transmission, the harm it has caused deserves our attention. Scientists are striving to develop medications that can effectively treat COVID-19 symptoms without causing any adverse reactions. SARS-CoV-2 inhibitory peptides derived from animal proteins have a wide range of functional activities in addition to safety. Identifying animal protein sources is crucial to obtaining SARS-CoV-2 inhibitory peptides from animal sources. This review aims to reveal the mechanisms of action of these peptides on SARS-CoV-2 and the possibility of animal proteins as a material source of SARS-CoV-2 inhibitory peptides. Also, it introduces the utilization of computer-aided design methods, phage display, and drug delivery strategies in the research on SARS-CoV-2 inhibitor peptides from animal proteins. In order to identify new antiviral peptides and boost their efficiency, we recommend investigating the interaction between SARS-CoV-2 inhibitory peptides from animal protein sources and non-structural proteins (Nsps) using a variety of technologies, including computer-aided drug approaches, phage display techniques, and drug delivery techniques. This article provides useful information for the development of novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Xiaoyue Kong
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yi Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yu Zhang
- Institute of Quality and Standard for Agriculture Products, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xingquan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Nittayananta W, Lerdsamran H, Chutiwitoonchai N, Promsong A, Srichana T, Netsomboon K, Prasertsopon J, Kerdto J. A novel film spray containing curcumin inhibits SARS-CoV-2 and influenza virus infection and enhances mucosal immunity. Virol J 2024; 21:26. [PMID: 38263162 PMCID: PMC10807123 DOI: 10.1186/s12985-023-02282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and influenza virus is still a major worldwide health concern. Plants are a good source of bioactive compounds to be used as preventive measures for both inhibiting the virus binding and enhancing mucosal innate immunity. Curcumin has been shown to possess antiviral activity and modulate innate immunity. Therefore, the purpose of this study was to develop an oro-nasal film spray containing curcumin and determine its antiviral activity against SARS-CoV-2 and influenza virus infection, as well as its effects on mucosal innate immunity and inflammatory cytokines in vitro. METHODS The antiviral activity of the film spray against SARS-CoV-2, influenza A/H1N1, A/H3N2, and influenza B was assessed in vitro by plaque reduction assay. Cytotoxicity of the film spray to oral keratinocytes and nasal epithelial cells was assessed by MTT assay, and cytotoxicity to Vero and MDCK cells was assessed by an MTS-based cytotoxicity assay. Oral and nasal innate immune markers in response to the film spray were determined by ELISA and by a commercial Milliplex Map Kit, respectively. RESULTS Our data show that the film spray containing curcumin can inhibit both SARS-CoV-2 and influenza virus infections while maintaining cell viability. Results obtained among 4 viruses revealed that curcumin film spray demonstrated the highest inhibitory activity against SARS-CoV-2 with the lowest EC50 of 3.15 µg/ml and the highest SI value of 4.62, followed by influenza B (EC50 = 6.32 µg/ml, SI = 2.04), influenza A/H1N1 (EC50 = 7.24 µg/ml, SI = 1.78), and influenza A/H3N2 (EC50 > 12.5 µg/ml, SI < 1.03), respectively. Antimicrobial peptides LL-37 and HD-5, IL-6 and TNF-α produced by oral keratinocytes were significantly induced by the film spray, while hBD2 was significantly reduced. CONCLUSION Film spray containing curcumin possesses multiple actions against SARS-CoV-2 infection by inhibiting ACE-2 binding in target cells and enhancing mucosal innate immunity. The film spray can also inhibit influenza virus infection. Therefore, the curcumin film spray may be effective in preventing the viral infection of both SARS-CoV-2 and influenza.
Collapse
Affiliation(s)
| | - Hatairat Lerdsamran
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Nopporn Chutiwitoonchai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Aornrutai Promsong
- Faculty of Medicine, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Jarunee Prasertsopon
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Jaruta Kerdto
- Thammasat Hospital, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
8
|
Zhang L, Li J. Molecular Dynamics Simulations on Spike Protein Mutants Binding with Human β Defensin Type 2. J Phys Chem B 2024; 128:415-428. [PMID: 38189674 DOI: 10.1021/acs.jpcb.3c05460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Human β defensin type 2 (hBD-2), a cationic cysteine-rich peptide secreted from the human innate immune system, can bind Spike-RBD at the same site as receptor ACE2, thus blocking viral entry into ACE2-expressing cells. In order to find out the impact of CoV-2 mutations on hBD-2's antiviral activity, it is important to investigate the binding and interaction of hBD-2 with RBD mutants. All-atom molecular dynamics simulations were conducted on typical RBD mutants, including N501Y, E484K, P479S, T478I, S477N, N439K, K417N, and N501Y-E484K-K417N, binding with hBD-2. Starting from the stable binding structure of hBD-2 and wt-RBD and ClusPro and HADDOCK docking-predicted initial structures, the RBD variants bound with hBD-2 simulations were set up, and NAMD simulations were conducted. Based on the structure and dynamics analysis, it was found that most RBD variants can still form a similar number of hydrogen bonds with hBD-2, in addition to having a similar-sized buried surface area (BSA) and a similar binding interface to the RBD wildtype. However, the RBD triple mutant formed a less stable binding structure with hBD-2 than other variants. Additionally, the free energy perturbation (FEP) method was applied to calculate the contribution of key mutant residues to the binding and the free energy change caused by the mutations. The result shows that N439K, K417N, and the trimutation increase the binding free energy of RBD with hBD-2; thus, RBD should bind less stably with hBD-2. E484K decreases the binding free energy, thus it should bind more stably with hBD-2, while N501Y, S477N, T478I, and P479S almost do not change the binding free energy with hBD-2. The MM-GBSA method predicted the binding interaction energy which shows that the trimutant should be able to escape the binding with hBD-2 but N501Y should not. The result can provide insight into understanding the functional mechanism of hBD-2 combating SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jadeson Li
- Newton North High School, 457 Walnut Street, Newton, Massachusetts 02460, United States
| |
Collapse
|
9
|
Naderi Beni R, Elyasi-Ebli P, Gharaghani S, Seyedarabi A. In silico studies of anti-oxidative and hot temperament-based phytochemicals as natural inhibitors of SARS-CoV-2 Mpro. PLoS One 2023; 18:e0295014. [PMID: 38033024 PMCID: PMC10688677 DOI: 10.1371/journal.pone.0295014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Main protease (Mpro) of SARS-CoV-2 is considered one of the key targets due to its role in viral replication. The use of traditional phytochemicals is an important part of complementary/alternative medicine, which also accompany the concept of temperament, where it has been shown that hot medicines cure cold and cold medicines cure hot, with cold and hot pattern being associated with oxidative and anti-oxidative properties in medicine, respectively. Molecular docking in this study has demonstrated that a number of anti-oxidative and hot temperament-based phytochemicals have high binding affinities to SARS-CoV-2 Mpro, both in the monomeric and dimeric deposited states of the protein. The highest ranking phytochemicals identified in this study included savinin, betulinic acid and curcumin. Complexes of savinin, betulinic acid, curcumin as well as Nirmatrelvir (the only approved inhibitor, used for comparison) bound to SARS-CoV-2 Mpro were further subjected to molecular dynamics simulations. Subsequently, RMSD, RMSF, Rg, number of hydrogen bonds, binding free energies and residue contributions (using MM-PBSA) and buried surface area (BSA), were analysed. The computational results suggested high binding affinities of savinin, betulinic acid and curcumin to both the monomeric and dimeric deposited states of Mpro, while highlighting the lower binding energy of betulinic acid in comparison with savinin and curcumin and even Nirmatrelvir, leading to a greater stability of the betulinic acid-SARS-CoV-2 Mpro complex. Overall, based on the increasing mutation rate in the spike protein and the fact that the SARS-CoV-2 Mpro remains highly conserved, this study provides an insight into the use of phytochemicals against COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Ramin Naderi Beni
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Parisa Elyasi-Ebli
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Behairy MY, Eid RA, Otifi HM, Mohammed HM, Alshehri MA, Asiri A, Aldehri M, Zaki MSA, Darwish KM, Elhady SS, El-Shaer NH, Eldeen MA. Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy. J Pers Med 2023; 13:1648. [PMID: 38138875 PMCID: PMC10744719 DOI: 10.3390/jpm13121648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-1-receptor-associated kinase 4 (IRAK4) possesses a crucial function in the toll-like receptor (TLR) signaling pathway, and the dysfunction of this molecule could lead to various infectious and immune-related diseases in addition to cancers. IRAK4 genetic variants have been linked to various types of diseases. Therefore, we conducted a comprehensive analysis to recognize the missense variants with the most damaging impacts on IRAK4 with the employment of diverse bioinformatics tools to study single-nucleotide polymorphisms' effects on function, stability, secondary structures, and 3D structure. The residues' location on the protein domain and their conservation status were investigated as well. Moreover, docking tools along with structural biology were engaged in analyzing the SNPs' effects on one of the developed IRAK4 inhibitors. By analyzing IRAK4 gene SNPs, the analysis distinguished ten variants as the most detrimental missense variants. All variants were situated in highly conserved positions on an important protein domain. L318S and L318F mutations were linked to changes in IRAK4 secondary structures. Eight SNPs were revealed to have a decreasing effect on the stability of IRAK4 via both I-Mutant 2.0 and Mu-Pro tools, while Mu-Pro tool identified a decreasing effect for the G198E SNP. In addition, detrimental effects on the 3D structure of IRAK4 were also discovered for the selected variants. Molecular modeling studies highlighted the detrimental impact of these identified SNP mutant residues on the druggability of the IRAK4 ATP-binding site towards the known target inhibitor, HG-12-6, as compared to the native protein. The loss of important ligand residue-wise contacts, altered protein global flexibility, increased steric clashes, and even electronic penalties at the ligand-binding site interfaces were all suggested to be associated with SNP models for hampering the HG-12-6 affinity towards IRAK4 target protein. This given model lays the foundation for the better prediction of various disorders relevant to IRAK4 malfunction and sheds light on the impact of deleterious IRAK4 variants on IRAK4 inhibitor efficacy.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (R.A.E.); (H.M.O.)
| | - Hassan M. Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (R.A.E.); (H.M.O.)
| | - Heitham M. Mohammed
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Mohammed A. Alshehri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (M.A.A.)
| | - Ashwag Asiri
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (M.A.A.)
| | - Majed Aldehri
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Mohamed Samir A. Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha P.O. Box 61421, Saudi Arabia; (H.M.M.); (M.A.); (M.S.A.Z.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nahla H. El-Shaer
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt;
| | - Muhammad Alaa Eldeen
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
11
|
Rucker G, Qin H, Zhang L. Structure, dynamics and free energy studies on the effect of point mutations on SARS-CoV-2 spike protein binding with ACE2 receptor. PLoS One 2023; 18:e0289432. [PMID: 37796794 PMCID: PMC10553274 DOI: 10.1371/journal.pone.0289432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The ongoing COVID-19 pandemic continues to infect people worldwide, and the virus continues to evolve in significant ways which can pose challenges to the efficiency of available vaccines and therapeutic drugs and cause future pandemic. Therefore, it is important to investigate the binding and interaction of ACE2 with different RBD variants. A comparative study using all-atom MD simulations was conducted on ACE2 binding with 8 different RBD variants, including N501Y, E484K, P479S, T478I, S477N, N439K, K417N and N501Y-E484K-K417N on RBD. Based on the RMSD, RMSF, and DSSP results, overall the binding of RBD variants with ACE2 is stable, and the secondary structure of RBD and ACE2 are consistent after the point mutation. Besides that, a similar buried surface area, a consistent binding interface and a similar amount of hydrogen bonds formed between RBD and ACE2 although the exact residue pairs on the binding interface were modified. The change of binding free energy from point mutation was predicted using the free energy perturbation (FEP) method. It is found that N501Y, N439K, and K417N can strengthen the binding of RBD with ACE2, while E484K and P479S weaken the binding, and S477N and T478I have negligible effect on the binding. Point mutations modified the dynamic correlation of residues in RBD based on the dihedral angle covariance matrix calculation. Doing dynamic network analysis, a common intrinsic network community extending from the tail of RBD to central, then to the binding interface region was found, which could communicate the dynamics in the binding interface region to the tail thus to the other sections of S protein. The result can supply unique methodology and molecular insight on studying the molecular structure and dynamics of possible future pandemics and design novel drugs.
Collapse
Affiliation(s)
- George Rucker
- Chemical Engineering Department, Tennessee Technological University, Cookeville, TN, United States of America
| | - Hong Qin
- Computer Science Department, University of Tennessee Chattanooga, Chattanooga, TN, United States of America
| | - Liqun Zhang
- Chemical Engineering Department, University of Rhode Island, Kingston, RI, United States of America
| |
Collapse
|
12
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
13
|
Çobanoğlu Ş, Arslan E, Yazıcı A, Örtücü S. Expression of Human β-defensin 2 (hBD-2) in Pichia Pastoris and Investigation of Its Binding Efficiency with ACE-2. Protein J 2023; 42:399-407. [PMID: 37291459 PMCID: PMC10250178 DOI: 10.1007/s10930-023-10130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
COVID-19 is a disease that have affected the entire world, and it continues to spread with new variants. A patient's innate immune system plays a critical role in the mild and severe transition of COVID-19. Antimicrobial peptides (AMPs), which are important components of the innate immune system, are potential molecules to fight pathogenic bacteria, fungi, and viruses. Human β-defensin 2 (hBD-2), a 41-amino-acid antimicrobial peptide, is one of the defensins inducibly expressed in the skin, lungs, and trachea in humans. In this study, it was aimed to investigate the interaction of hBD-2 produced recombinantly in Pichia pastoris with the human angiotensin-converting enzyme 2 (ACE-2) under in vitro conditions. First, hBD-2 was cloned in P. pastoris X-33 via the pPICZαA vector, a yeast expression platform, and its expression was confirmed by SDS-PAGE, western blotting, and qRT-PCR. Then, the interaction between recombinant hBD-2 and ACE-2 proteins was revealed by a pull-down assay. In light of these preliminary experiments, we suggest that the recombinantly produced hBD-2 may be protective against SARS-CoV-2 and be used as a supplement in treatment. However, current findings need to be supported by cell culture studies, toxicity analyses, and in vivo experiments.
Collapse
Affiliation(s)
- Şeymanur Çobanoğlu
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey
| | - Elif Arslan
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey
| | - Ayşenur Yazıcı
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey.
| | - Serkan Örtücü
- Faculty of Science, Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Research and Application Centre (YUTAM), Molecular Microbiology Laboratory, Erzurum Technical University, Erzurum, Turkey
- EcoTech Biotechnology, Ata Teknokent, Erzurum, Turkey
| |
Collapse
|
14
|
Gao B, Zhu S. Enhancement of SARS-CoV-2 receptor-binding domain activity by two microbial defensins. Front Microbiol 2023; 14:1195156. [PMID: 37405160 PMCID: PMC10315472 DOI: 10.3389/fmicb.2023.1195156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023] Open
Abstract
Peptide binders are of great interest to both basic and biomedical research due to their unique properties in manipulating protein functions in a precise spatial and temporal manner. The receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein is a ligand that captures human angiotensin-converting enzyme 2 (ACE2) to initiate infection. The development of binders of RBDs has value either as antiviral leads or as versatile tools to study the functional properties of RBDs dependent on their binding positions on the RBDs. In this study, we report two microbe-derived antibacterial defensins with RBD-binding activity. These two naturally occurring binders bind wild-type RBD (WT RBD) and RBDs from various variants with moderate-to-high affinity (7.6-1,450 nM) and act as activators that enhance the ACE2-binding activity of RBDs. Using a computational approach, we mapped an allosteric pathway in WT RBD that connects its ACE2-binding sites to other distal regions. The latter is targeted by the defensins, in which a cation-π interaction could trigger the peptide-elicited allostery in RBDs. The discovery of the two positive allosteric peptides of SARS-CoV-2 RBD will promote the development of new molecular tools for investigating the biochemical mechanisms of RBD allostery.
Collapse
|
15
|
Hamza FN, Daher S, Fakhoury HMA, Grant WB, Kvietys PR, Al-Kattan K. Immunomodulatory Properties of Vitamin D in the Intestinal and Respiratory Systems. Nutrients 2023; 15:nu15071696. [PMID: 37049536 PMCID: PMC10097244 DOI: 10.3390/nu15071696] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Vitamin D plays a crucial role in modulating the innate immune response by interacting with its intracellular receptor, VDR. In this review, we address vitamin D/VDR signaling and how it contributes to the regulation of intestinal and respiratory microbiota. We additionally review some components of the innate immune system, such as the barrier function of the pulmonary and intestinal epithelial membranes and secretion of mucus, with their respective modulation by vitamin D. We also explore the mechanisms by which this vitamin D/VDR signaling mounts an antimicrobial response through the transduction of microbial signals and the production of antimicrobial peptides that constitute one of the body’s first lines of defense against pathogens. Additionally, we highlight the role of vitamin D in clinical diseases, namely inflammatory bowel disease and acute respiratory distress syndrome, where excessive inflammatory responses and dysbiosis are hallmarks. Increasing evidence suggests that vitamin D supplementation may have potentially beneficial effects on those diseases.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Sarah Daher
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Hana M. A. Fakhoury
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Correspondence:
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Peter R. Kvietys
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
16
|
Alrouji M, Majrashi TA, Alhumaydhi FA, Zari A, Zari TA, Al Abdulmonem W, Sharaf SE, Shahwan M, Anwar S, Shamsi A, Atiya A. Unveiling Phytoconstituents with Inhibitory Potential Against Tyrosine-Protein Kinase Fyn: A Comprehensive Virtual Screening Approach Targeting Alzheimer's Disease. J Alzheimers Dis 2023; 96:827-844. [PMID: 37899058 DOI: 10.3233/jad-230828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
BACKGROUND Tyrosine-protein kinase Fyn (Fyn) is a critical signaling molecule involved in various cellular processes, including neuronal development, synaptic plasticity, and disease pathogenesis. Dysregulation of Fyn kinase has been implicated in various complex diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as different cancer types. Therefore, identifying small molecule inhibitors that can inhibit Fyn activity holds substantial significance in drug discovery. OBJECTIVE The aim of this study was to identify potential small-molecule inhibitors among bioactive phytoconstituents against tyrosine-protein kinase Fyn. METHODS Through a comprehensive approach involving molecular docking, drug likeliness filters, and molecular dynamics (MD) simulations, we performed a virtual screening of a natural compounds library. This methodology aimed to pinpoint compounds potentially interacting with Fyn kinase and inhibiting its activity. RESULTS This study finds two potential natural compounds: Dehydromillettone and Tanshinone B. These compoundsdemonstrated substantial affinity and specific interactions towards the Fyn binding pocket. Their conformations exhibitedcompatibility and stability, indicating the formation of robust protein-ligand complexes. A significant array of non-covalentinteractions supported the structural integrity of these complexes. CONCLUSION Dehydromillettone and Tanshinone B emerge as promising candidates, poised for further optimization as Fynkinase inhibitors with therapeutic applications. In a broader context, this study demonstrates the potential of computationaldrug discovery, underscoring its utility in identifying compounds with clinical significance. The identified inhibitors holdpromise in addressing a spectrum of cancer and neurodegenerative disorders. However, their efficacy and safety necessitatevalidation through subsequent experimental studies.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ali Zari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Talal A Zari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy Umm Al-Qura University Makkah, Saudi Arabia
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences, Ajman University, Ajman, UAE
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences, Ajman University, Ajman, UAE
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger, Abha, Saudi Arabia
| |
Collapse
|
17
|
Gouda AM, Soltan MA, Abd-Elghany K, Sileem AE, Elnahas HM, Ateya MAM, Elbatreek MH, Darwish KM, Bogari HA, Lashkar MO, Aldurdunji MM, Elhady SS, Ahmad TA, Said AM. Integration of immunoinformatics and cheminformatics to design and evaluate a multitope vaccine against Klebsiella pneumoniae and Pseudomonas aeruginosa coinfection. Front Mol Biosci 2023; 10:1123411. [PMID: 36911530 PMCID: PMC9999731 DOI: 10.3389/fmolb.2023.1123411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: Klebsiella pneumoniae (K. pneumoniae) and Pseudomonas aeruginosa (P. aeruginosa) are the most common Gram-negative bacteria associated with pneumonia and coinfecting the same patient. Despite their high virulence, there is no effective vaccine against them. Methods: In the current study, the screening of several proteins from both pathogens highlighted FepA and OmpK35 for K. pneumonia in addition to HasR and OprF from P. aeruginosa as promising candidates for epitope mapping. Those four proteins were linked to form a multitope vaccine, that was formulated with a suitable adjuvant, and PADRE peptides to finalize the multitope vaccine construct. The final vaccine's physicochemical features, antigenicity, toxicity, allergenicity, and solubility were evaluated for use in humans. Results: The output of the computational analysis revealed that the designed multitope construct has passed these assessments with satisfactory scores where, as the last stage, we performed a molecular docking study between the potential vaccine construct and K. pneumonia associated immune receptors, TLR4 and TLR2, showing affinitive to both targets with preferentiality for the TLR4 receptor protein. Validation of the docking studies has proceeded through molecular dynamics simulation, which estimated a strong binding and supported the nomination of the designed vaccine as a putative solution for K. pneumoniae and P. aeruginosa coinfection. Here, we describe the approach for the design and assessment of our potential vaccine.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Khalid Abd-Elghany
- Department of Microbiology-Microbial Biotechnology, Egyptian Drug Authority, Giza, Egypt
| | - Ashraf E Sileem
- Department of Chest Diseases, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanan M Elnahas
- Department of Pharmaceutical and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Mahmoud H Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Hanin A Bogari
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manar O Lashkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sameh S Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarek A Ahmad
- Library Sector, Bibliotheca Alexandrina, Alexandria, Egypt
| | - Ahmed Mohamed Said
- Department of Chest Diseases, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Differential Gene Expression Induced by Different TLR Agonists in A549 Lung Epithelial Cells Is Modulated by CRISPR Activation of TLR10. Biomolecules 2022; 13:biom13010019. [PMID: 36671404 PMCID: PMC9855645 DOI: 10.3390/biom13010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor 10 (TLR10) is the only member of the TLR family whose function and ligand have not been clearly described. Literature reports on its function are contradictory and suggest a possible immunomodulatory role that depends on the cell type, the pathogen, and the level of TLR10 expression. To investigate the regulatory role of TLR10 in A549 lung epithelial cells, we overexpressed TLR10 using CRISPRa technology and examined the differential expression of various genes involved in TLR signaling activated by different TLR ligands, namely dsRNA, LPS, and Pam3Cys. The expression of proinflammatory cytokines, such as IL1β, IFNβ, TNFα, IL8, CXCL10, and CCL20, decreased in the challenged cells overexpressing TLR10, whereas the expression of the anti-inflammatory cytokine IL10 and the antimicrobial peptide hβD-2 increased. For several of the regulated inflammatory markers, we were able to show the change in gene expression was translated to the protein level. It appears that TLR10 can function as an anti-inflammatory in A549 cells, depending on its expression level and that the mode of action may be virulence factor-specific. The potential suppression of inflammation by regulating expression of TLR10 in lung epithelial cells may allow the development of new approaches to balance an inflammatory response and prevent extensive tissue damage in respiratory diseases.
Collapse
|
19
|
Behairy MY, Soltan MA, Eldeen MA, Abdulhakim JA, Alnoman MM, Abdel-Daim MM, Otifi H, Al-Qahtani SM, Zaki MSA, Alsharif G, Albogami S, Jafri I, Fayad E, Darwish KM, Elhady SS, Eid RA. HBD-2 variants and SARS-CoV-2: New insights into inter-individual susceptibility. Front Immunol 2022; 13:1008463. [PMID: 36569842 PMCID: PMC9780532 DOI: 10.3389/fimmu.2022.1008463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background A deep understanding of the causes of liability to SARS-CoV-2 is essential to develop new diagnostic tests and therapeutics against this serious virus in order to overcome this pandemic completely. In the light of the discovered role of antimicrobial peptides [such as human b-defensin-2 (hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it became important to identify the damaging missense mutations in the genes of these molecules and study their role in the pathogenesis of COVID-19. Methods We conducted a comprehensive analysis with multiple in silico approaches to identify the damaging missense SNPs for hBD-2 and LL-37; moreover, we applied docking methods and molecular dynamics analysis to study the impact of the filtered mutations. Results The comprehensive analysis reveals the presence of three damaging SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2 with a damaging impact on hBD-2 structure as well. G51D and C53G mutations were located in highly conserved positions and were associated with differences in the secondary structures of hBD-2. Docking-coupled molecular dynamics simulation analysis revealed compromised binding affinity for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein-protein binding profiles for hBD-2 SNPs, in relation to their native form, were guided through residue-wise levels and differential adopted conformation/orientation. Conclusions The presented model paves the way for identifying patients prone to COVID-19 in a way that would guide the personalization of both the diagnostic and management protocols for this serious disease.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Mohamed A. Soltan
- Department of Microbiology and immunology, Faculty of Pharmacy, Sinai University – Kantara Branch, Ismailia, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jawaher A. Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Maryam M. Alnoman
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hassan Otifi
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia,Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadi Alsharif
- College of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
20
|
Zhang YW, Cao MM, Li YJ, Zhang RL, Wu MT, Yu Q, Rui YF. Fecal microbiota transplantation as a promising treatment option for osteoporosis. J Bone Miner Metab 2022; 40:874-889. [PMID: 36357745 PMCID: PMC9649400 DOI: 10.1007/s00774-022-01375-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
Osteoporosis is a systemic metabolic bone disease characterized by the descending bone mass and destruction of bone microstructure, which tends to result in the increased bone fragility and associated fractures, as well as high disability rate and mortality. The relation between gut microbiota and bone metabolism has gradually become a research hotspot, and it has been verified that gut microbiota is closely associated with reduction of bone mass and incidence of osteoporosis recently. As a novel "organ transplantation" technique, fecal microbiota transplantation (FMT) mainly refers to the transplantation of gut microbiota from healthy donors to recipients with gut microbiota imbalance, so that the gut microbiota in recipients can be reshaped and play a normal function, and further prevent or treat the diseases related to gut microbiota disorder. Herein, based on the gut-bone axis and proven regulatory effects of gut microbiota on osteoporosis, this review expounds relevant basic researches and clinical practice of FMT on osteoporosis, thus demonstrating the potentials of FMT as a therapeutic option for osteoporosis and further providing certain reference for the future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Ruo-Lan Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Ting Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Qian Yu
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|
23
|
Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I. Host Defence Peptides: A Potent Alternative to Combat Antimicrobial Resistance in the Era of the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:475. [PMID: 35453226 PMCID: PMC9032040 DOI: 10.3390/antibiotics11040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
One of the greatest challenges facing the medical community today is the ever-increasing trajectory of antimicrobial resistance (AMR), which is being compounded by the decrease in our antimicrobial armamentarium. From their initial discovery to the current day, antibiotics have seen an exponential increase in their usage, from medical to agricultural use. Benefits aside, this has led to an exponential increase in AMR, with the fear that over 10 million lives are predicted to be lost by 2050, according to the World Health Organisation (WHO). As such, medical researchers are turning their focus to discovering novel alternatives to antimicrobials, one being Host Defence Peptides (HDPs). These small cationic peptides have shown great efficacy in being used as an antimicrobial therapy for currently resistant microbial variants. With the sudden emergence of the SARS-CoV-2 variant and the subsequent global pandemic, the great versatility and potential use of HDPs as an alternative to conventional antibiotics in treating as well as preventing the spread of COVID-19 has been reviewed. Thus, to allow the reader to have a full understanding of the multifaceted therapeutic use of HDPs, this literature review shall cover the association between COVID-19 and AMR whilst discussing and evaluating the use of HDPs as an answer to antimicrobial resistance (AMR).
Collapse
Affiliation(s)
| | | | | | | | - Imran Mohammed
- Section of Ophthalmology, Larry A. Donoso Laboratory for Eye Research, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Queens Medical Centre, Eye and ENT Building, Nottingham NG7 2UH, UK; (W.A.); (A.E.); (D.S.J.T.); (H.S.D.)
| |
Collapse
|