1
|
Cardano M, Buscemi G, Zannini L. Sex Disparities in P53 Regulation and Functions: Novel Insights for Personalized Cancer Therapies. Cells 2025; 14:363. [PMID: 40072091 PMCID: PMC11898824 DOI: 10.3390/cells14050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Epidemiological studies have revealed significant sex differences in the incidence of tumors unrelated to reproductive functions, with females demonstrating a lesser risk and a better response to therapy than males. However, the reasons for these disparities are still unknown and cancer therapies are generally sex-unbiased. The tumor-suppressor protein p53 is a transcription factor that can activate the expression of multiple target genes mainly involved in the maintenance of genome stability and tumor prevention. It is encoded by TP53, which is the most-frequently mutated gene in human cancers and therefore constitutes an attractive target for therapy. Recently, evidence of sex differences has emerged in both p53 regulations and functions, possibly providing novel opportunities for personalized cancer medicine. Here, we will review and discuss current knowledge about sexual disparities in p53 pathways, their role in tumorigenesis and cancer progression, and their importance in the therapy choice process, finally highlighting the importance of considering sex contribution in both basic research and clinical practice.
Collapse
|
2
|
Liberale L, Tual-Chalot S, Sedej S, Ministrini S, Georgiopoulos G, Grunewald M, Bäck M, Bochaton-Piallat ML, Boon RA, Ramos GC, de Winther MPJ, Drosatos K, Evans PC, Ferguson JF, Forslund-Startceva SK, Goettsch C, Giacca M, Haendeler J, Kallikourdis M, Ketelhuth DFJ, Koenen RR, Lacolley P, Lutgens E, Maffia P, Miwa S, Monaco C, Montecucco F, Norata GD, Osto E, Richardson GD, Riksen NP, Soehnlein O, Spyridopoulos I, Van Linthout S, Vilahur G, Wentzel JJ, Andrés V, Badimon L, Benetos A, Binder CJ, Brandes RP, Crea F, Furman D, Gorbunova V, Guzik TJ, Hill JA, Lüscher TF, Mittelbrunn M, Nencioni A, Netea MG, Passos JF, Stamatelopoulos KS, Tavernarakis N, Ungvari Z, Wu JC, Kirkland JL, Camici GG, Dimmeler S, Kroemer G, Abdellatif M, Stellos K. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 2025:10.1038/s41569-025-01130-5. [PMID: 39972009 DOI: 10.1038/s41569-025-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Myriam Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magnus Bäck
- Translational Cardiology, Centre for Molecular Medicine, Department of Medicine Solna, and Department of Cardiology, Heart and Vascular Centre, Karolinska Institutet, Stockholm, Sweden
- Inserm, DCAC, Université de Lorraine, Nancy, France
| | | | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Gustavo Campos Ramos
- Department of Internal Medicine I/Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischaemic Syndromes; Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location AMC, Amsterdam, Netherlands
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul C Evans
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mauro Giacca
- British Heart foundation Centre of Reseach Excellence, King's College London, London, UK
| | - Judith Haendeler
- Cardiovascular Degeneration, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Daniel F J Ketelhuth
- Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rory R Koenen
- CARIM-School for Cardiovascular Diseases, Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine & Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Satomi Miwa
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu y Sant Pau l, IIB-Sant Pau, Barcelona, Spain
| | - Jolanda J Wentzel
- Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), CIBERCV, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Health and Innovation Research Foundation (FICSI) and Cardiovascular Health and Network Medicine Department, University of Vic (UVIC-UCC), Barcelona, Spain
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph A Hill
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Genova, Italy
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kimon S Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Tavernarakis
- Medical School, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm, Institut Universitaire de France, Paris, France
| | | | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
Cottagiri SA, King W, Rodriguez-Villamizar L, Villeneuve PJ. The risk of thyroid cancer in relation to residential proximity to nuclear power plants: a systematic review and meta-analysis. Environ Health 2024; 23:106. [PMID: 39614350 PMCID: PMC11606113 DOI: 10.1186/s12940-024-01143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024]
Abstract
INTRODUCTION Ionizing radiation is a human carcinogen, and there is a public concern but limited evidence that it increases the incidence of cancer among those who live near nuclear power plants (NPPs). Previous analyses of thyroid cancer in these populations have been inconsistent, and the last synthesis was published nearly a decade ago. To address these gaps, we undertook a systematic review and meta-analysis. METHODS A search strategy was developed and applied to PubMed, Scopus, and Web of Science databases. A total of 2006 publications were identified, with 11 studies of thyroid cancer incidence that met the inclusion criteria. Study quality was assessed using the Office of Health Assessment and Translation (OHAT) tool. Summary risk estimates relating residential proximity to the NPPs and thyroid cancer were generated using a random effects model. Heterogeneity in the risk estimates was assessed for study features that included: distance to the NPP, study quality, and biological sex. RESULTS The 11 studies were categorized as either highly (n = 8) or plausibly (n = 3) prone to bias, primarily due to the reliance on ecological study designs. The meta-analysis summary relative risk of thyroid cancer among those who live close to NPPs (defined by ≤ 25 km distance or jurisdictional areas (e.g., community, county) relative to those who lived further away was 1.09 (95% CI: 0.93-1.29). The risk estimates were higher for studies that modelled more proximal residential distances (≤ 5 km) to NPPs than larger distances (≤ 25 km and jurisdictional areas). We found that the summary risk (RR=1.29, 95% CI: 0.77-2.16) was stronger among those studies less prone to bias. A non-significant increased risk was found among both men and women, but there was no evidence of sex differences in risk. CONCLUSION Overall, the findings suggest that living near a nuclear power plant increases the risk of thyroid cancer. The small number of studies on this topic, and the finding of higher risks in studies less prone to bias highlights the need for better-designed studies.
Collapse
Affiliation(s)
- Susanna Abraham Cottagiri
- Department of Public Health Sciences, School of Medicine, Queens University, 99 University Ave, Kingston, ON, K7L 3N6, Canada.
| | - Will King
- Department of Public Health Sciences, School of Medicine, Queens University, 99 University Ave, Kingston, ON, K7L 3N6, Canada
| | - Laura Rodriguez-Villamizar
- Faculty of Health, Industrial University of Santander, Cra. 32, Santander, Bucaramanga, #29-31, Colombia
| | - Paul J Villeneuve
- Department of Public Health Sciences, School of Medicine, Queens University, 99 University Ave, Kingston, ON, K7L 3N6, Canada
- Department of Neuroscience, Health Sciences Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
4
|
Bharathidasan D, Maity C. Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application. Top Curr Chem (Cham) 2024; 383:1. [PMID: 39607460 DOI: 10.1007/s41061-024-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In cellular environments, certain synthetic molecules can form nanostructures via self-assembly, impacting molecular imaging, and biomedical applications. Control over the formation of these self-assembled nanostructures in subcellular organelle is challenging. By the action of stimuli, either present in the cellular environment or applied externally, in situ generation of molecular precursors can lead to accumulation and supramolecular nanostructure formation, resulting in efficient bioimaging. Here, we summarize smart fluorophore-based ordered nanostructure preparation at specific organelles for efficient bioimaging and therapeutic application towards cancer theranostics. We also present challenges and an outlook regarding intercellular self-assembly for theranostics application. Altogether, smart nanostructured materials with fluorescence read-outs at specific subcellular compartments would be beneficial in synthetic biology and precision therapeutics.
Collapse
Affiliation(s)
- Dineshkumar Bharathidasan
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India
| | - Chandan Maity
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
5
|
Verheijen BM, Vermulst M. Linking Environmental Genotoxins to Neurodegenerative Diseases Through Transcriptional Mutagenesis. Int J Mol Sci 2024; 25:11429. [PMID: 39518982 PMCID: PMC11545915 DOI: 10.3390/ijms252111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024] Open
Abstract
Numerous lines of evidence suggest that DNA damage contributes to the initiation, progression, and severity of neurodegenerative diseases. However, the molecular mechanisms responsible for this relationship remain unclear. This review integrates historical data with contemporary findings to propose that DNA damage exacerbates neurodegenerative diseases by inducing transcription errors. First, we describe the scientific rationale and basic biological concepts that underpin this hypothesis. Then, we provide epidemiological, cellular, and molecular data to support this idea, and we describe new and recently published observations that suggest that the former high incidence of neurodegenerative disease in Guam may have been driven by DNA damage-induced transcription errors. Finally, we explore the long-term implications of these findings on our understanding of the impact of genotoxic stress on human aging and disease.
Collapse
Affiliation(s)
- Bert M. Verheijen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc Vermulst
- School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Muggiolu G, Sauvaigo S, Libert S, Millet M, Daguenet E, Bouleftour W, Maillet T, Deutsch E, Magné N. Baseline DSB repair prediction of chronic rare Grade ≥ 3 toxicities induced by radiotherapy using classification algorithms. JOURNAL OF RADIATION RESEARCH 2024; 65:540-548. [PMID: 38899572 PMCID: PMC11262860 DOI: 10.1093/jrr/rrae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/29/2024] [Indexed: 06/21/2024]
Abstract
Small fractions of patients suffer from radiotherapy late severe adverse events (AEs Grade ≥ 3), which are usually irreversible and badly affect their quality of life. A novel functional DNA repair assay characterizing several steps of double-strand break (DSB) repair mechanisms was used. DNA repair activities of peripheral blood mononuclear cells were monitored for 1 week using NEXT-SPOT assay in 177 breast and prostate cancer patients. Only seven patients had Grade ≥ 3 AEs, 6 months after radiotherapy initiation. The machine learning method established the importance of variables among demographic, clinical and DNA repair data. The most relevant ones, all related to DNA repair, were employed to build a predictor. Predictors constructed with random forest and minimum bounding sphere predicted late Grade ≥ 3 AEs with a sensitivity of 100% and specificity of 77.17 and 86.22%, respectively. This multiplex functional approach strongly supports a dominant role for DSB repair in the development of chronic AEs. It also showed that affected patients share specific features related to functional aspects of DSB repair. This strategy may be suitable for routine clinical analysis and paves the way for modelling DSB repair associated with severe AEs induced by radiotherapy.
Collapse
Affiliation(s)
- Giovanna Muggiolu
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Sylvie Sauvaigo
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Sarah Libert
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Mathias Millet
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Elisabeth Daguenet
- Clinical Research Department, Cancerology and Hematology Institute, CHU de Saint Etienne, 108 Avenue Albert Raimond, 42055 Cedex 02, France
| | - Wafa Bouleftour
- Clinical Research Department, Cancerology and Hematology Institute, CHU de Saint Etienne, 108 Avenue Albert Raimond, 42055 Cedex 02, France
| | - Thierry Maillet
- LXRepair, Research Department, 5 Avenue du Grand Sablon, La Tronche 38700, France
| | - Eric Deutsch
- Gustave Roussy Cancer Campus (GRCC), 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Nicolas Magné
- Department of Radiation Oncology, Institut Bergonié, 229 Cr de l'Argonne, 33076 Bordeaux, France
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, Unité Mixte de Recherche CNRS5822/IP2I, University of Lyon, Ouliins, 69600, France
| |
Collapse
|
7
|
Celli L, Gasparini P, Biino G, Zannini L, Cardano M. CRISPR/Cas9 mediated Y-chromosome elimination affects human cells transcriptome. Cell Biosci 2024; 14:15. [PMID: 38291538 PMCID: PMC10829266 DOI: 10.1186/s13578-024-01198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Sexual dimorphism represents a key concept in the comprehension of molecular processes guiding several sex-specific physiological and pathological mechanisms. It has been reported that genes involved in many disorders show a sex-dependent expression pattern. Moreover, the loss of Y chromosome (LOY), found to be a physiological age-driven phenomenon, has been linked to many neurodegenerative and autoimmune disorders, and to an increased cancer risk. These findings drove us towards the consideration that LOY may cause the de-regulation of disease specific networks, involving genes located in both autosomal and sex chromosomes. RESULTS Exploiting the CRISPR/Cas9 and RNA-sequencing technologies, we generated a Y-deficient human cell line that has been investigated for its gene expression profile. Our results showed that LOY can influence the transcriptome displaying relevant enriched biological processes, such as cell migration regulation, angiogenesis and immune response. Interestingly, the ovarian follicle development pathway was found enriched, supporting the female-mimicking profile of male Y-depleted cells. CONCLUSION This study, besides proposing a novel approach to investigate sex-biased physiological and pathological conditions, highlights new roles for the Y chromosome in the sexual dimorphism characterizing human health and diseases. Moreover, this analysis paves the way for the research of new therapeutic approaches for sex dimorphic and LOY-related diseases.
Collapse
Affiliation(s)
- Ludovica Celli
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy
- Institute for Biomedical Technologies, National Research Council, Via Fratelli Cervi 93, 20054, Segrate, Italy
| | - Patrizia Gasparini
- Epigenomic and Biomarkers of Solid Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Ginevra Biino
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy
| | - Laura Zannini
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy.
| | - Miriana Cardano
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", CNR, 27100, Pavia, Italy.
| |
Collapse
|
8
|
Lepetit C, Gaber M, Zhou K, Chen H, Holmes J, Summers P, Anderson KA, Scott RP, Pope CN, Hester K, Laurienti PJ, Quandt SA, Arcury TA, Vidi PA. Follicular DNA Damage and Pesticide Exposure Among Latinx Children in Rural and Urban Communities. EXPOSURE AND HEALTH 2023; 16:1039-1052. [PMID: 39220725 PMCID: PMC11362388 DOI: 10.1007/s12403-023-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 09/04/2024]
Abstract
The intersectional risks of children in United States immigrant communities include environmental exposures. Pesticide exposures and their biological outcomes are not well characterized in this population group. We assessed pesticide exposure and related these exposures to DNA double-strand breaks (DSBs) in Latinx children from rural, farmworker families (FW; N = 30) and from urban, non-farmworker families (NFW; N = 15) living in North Carolina. DSBs were quantified in hair follicular cells by immunostaining of 53BP1, and exposure to 72 pesticides and pesticide degradation products were determined using silicone wristbands. Cholinesterase activity was measured in blood samples. DSB frequencies were higher in FW compared to NFW children. Seasonal effects were detected in the FW group, with highest DNA damage levels in April-June and lowest levels in October-November. Acetylcholinesterase depression had the same seasonality and correlated with follicular DNA damage. Organophosphate pesticides were more frequently detected in FW than in NFW children. Participants with organophosphate detections had increased follicular DNA damage compared to participants without organophosphate detection. Follicular DNA damage did not correlate with organochlorine or pyrethroid detections and was not associated with the total number of pesticides detected in the wristbands. These results point to rural disparities in pesticide exposures and their outcomes in children from vulnerable immigrant communities. They suggest that among the different classes of pesticides, organophosphates have the strongest genotoxic effects. Assessing pesticide exposures and their consequences at the individual level is key to environmental surveillance programs. To this end, the minimally invasive combined approach used here is particularly well suited for children. Supplementary Information The online version contains supplementary material available at 10.1007/s12403-023-00609-1.
Collapse
Affiliation(s)
- Cassandra Lepetit
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| | - Mohamed Gaber
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Ke Zhou
- Sciences Humaines et Sociales, Institut de Cancérologie de l’Ouest, 44805 Saint Herblain, France
| | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Phillip Summers
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Kim A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Richard P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 USA
| | - Carey N. Pope
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Kirstin Hester
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Paul J. Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Sara A. Quandt
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Thomas A. Arcury
- Department of Family and Community Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Pierre-Alexandre Vidi
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
9
|
Hahn MW, Peña-Garcia Y, Wang RJ. The 'faulty male' hypothesis for sex-biased mutation and disease. Curr Biol 2023; 33:R1166-R1172. [PMID: 37989088 PMCID: PMC11795531 DOI: 10.1016/j.cub.2023.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Biological differences between males and females lead to many differences in physiology, disease, and overall health. One of the most prominent disparities is in the number of germline mutations passed to offspring: human males transmit three times as many mutations as do females. While the classic explanation for this pattern invokes differences in post-puberty germline replication between the sexes, recent whole-genome evidence in humans and other mammals has cast doubt on this mechanism. Here, we review recent work that is inconsistent with a replication-driven model of male-biased mutation, and propose an alternative, 'faulty male' hypothesis. This model proposes that males are less able to repair and/or protect DNA from damage compared to females. Importantly, we suggest that this new model for male-biased mutation may also help to explain several pronounced differences between the sexes in cancer, aging, and DNA repair. Although the detailed contributions of genetic, epigenetic, and hormonal influences of biological sex on mutation remain to be fully understood, a reconsideration of the mechanisms underlying these differences will lead to a deeper understanding of evolution and disease.
Collapse
Affiliation(s)
- Matthew W Hahn
- Department of Biology, Indiana University, 1001 E. 3(rd) Street, Bloomington, IN 47405, USA; Department of Computer Science, 700 N. Woodlawn Avenue, Bloomington, IN 47405, USA.
| | - Yadira Peña-Garcia
- Department of Biology, Indiana University, 1001 E. 3(rd) Street, Bloomington, IN 47405, USA
| | - Richard J Wang
- Department of Biology, Indiana University, 1001 E. 3(rd) Street, Bloomington, IN 47405, USA; Department of Computer Science, 700 N. Woodlawn Avenue, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Guilbaud A, Ghanegolmohammadi F, Wang Y, Leng J, Kreymerman A, Gamboa Varela J, Garbern J, Elwell H, Cao F, Ricci-Blair E, Liang C, Balamkundu S, Vidoudez C, DeMott M, Bedi K, Margulies K, Bennett D, Palmer A, Barkley-Levenson A, Lee R, Dedon P. Discovery adductomics provides a comprehensive portrait of tissue-, age- and sex-specific DNA modifications in rodents and humans. Nucleic Acids Res 2023; 51:10829-10845. [PMID: 37843128 PMCID: PMC10639045 DOI: 10.1093/nar/gkad822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/27/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
DNA damage causes genomic instability underlying many diseases, with traditional analytical approaches providing minimal insight into the spectrum of DNA lesions in vivo. Here we used untargeted chromatography-coupled tandem mass spectrometry-based adductomics (LC-MS/MS) to begin to define the landscape of DNA modifications in rat and human tissues. A basis set of 114 putative DNA adducts was identified in heart, liver, brain, and kidney in 1-26-month-old rats and 111 in human heart and brain by 'stepped MRM' LC-MS/MS. Subsequent targeted analysis of these species revealed species-, tissue-, age- and sex-biases. Structural characterization of 10 selected adductomic signals as known DNA modifications validated the method and established confidence in the DNA origins of the signals. Along with strong tissue biases, we observed significant age-dependence for 36 adducts, including N2-CMdG, 5-HMdC and 8-Oxo-dG in rats and 1,N6-ϵdA in human heart, as well as sex biases for 67 adducts in rat tissues. These results demonstrate the potential of adductomics for discovering the true spectrum of disease-driving DNA adducts. Our dataset of 114 putative adducts serves as a resource for characterizing dozens of new forms of DNA damage, defining mechanisms of their formation and repair, and developing them as biomarkers of aging and disease.
Collapse
Affiliation(s)
- Axel Guilbaud
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Farzan Ghanegolmohammadi
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yijun Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jiapeng Leng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jacqueline Gamboa Varela
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jessica Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hannah Elwell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fang Cao
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elisabeth M Ricci-Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cui Liang
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Seetharamsing Balamkundu
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kenneth Bedi
- University of Pennsylvania Cardiovascular Institute, Philadelphia, PA, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore 138602, Singapore
| |
Collapse
|
11
|
Miranda-Guevara A, Muñoz-Acevedo A, Fiorillo-Moreno O, Acosta-Hoyos A, Pacheco-Londoño L, Quintana-Sosa M, De Moya Y, Dias J, de Souza GS, Martinez-Lopez W, Garcia ALH, da Silva J, Borges MS, Henriques JAP, León-Mejía G. The dangerous link between coal dust exposure and DNA damage: unraveling the role of some of the chemical agents and oxidative stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7081-7097. [PMID: 37542205 PMCID: PMC10517898 DOI: 10.1007/s10653-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/15/2023] [Indexed: 08/06/2023]
Abstract
Exposure to coal mining dust poses a substantial health hazard to individuals due to the complex mixture of components released during the extraction process. This study aimed to assess the oxidative potential of residual coal mining dust on human lymphocyte DNA and telomeres and to perform a chemical characterization of coal dust and urine samples. The study included 150 individuals exposed to coal dust for over ten years, along with 120 control individuals. The results revealed significantly higher levels of DNA damage in the exposed group, as indicated by the standard comet assay, and oxidative damage, as determined by the FPG-modified comet assay. Moreover, the exposed individuals exhibited significantly shorter telomeres compared to the control group, and a significant correlation was found between telomere length and oxidative DNA damage. Using the PIXE method on urine samples, significantly higher concentrations of sodium (Na), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), iron (Fe), zinc (Zn), and bromine (Br) were observed in the exposed group compared to the control group. Furthermore, men showed shorter telomeres, greater DNA damage, and higher concentrations of nickel (Ni), calcium (Ca), and chromium (Cr) compared to exposed women. Additionally, the study characterized the particles released into the environment through GC-MS analysis, identifying several compounds, including polycyclic aromatic hydrocarbons (PAHs) such as fluoranthene, naphthalene, anthracene, 7H-benzo[c]fluorene, phenanthrene, pyrene, benz[a]anthracene, chrysene, and some alkyl derivatives. These findings underscore the significant health risks associated with exposure to coal mining dust, emphasizing the importance of further research and the implementation of regulatory measures to safeguard the health of individuals in affected populations.
Collapse
Affiliation(s)
- Alvaro Miranda-Guevara
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Amner Muñoz-Acevedo
- Grupo de Investigación en Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Ornella Fiorillo-Moreno
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
- Clínica Iberoamerica, Barranquilla, Colombia
- Clinica el Carmen, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Leonardo Pacheco-Londoño
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Milton Quintana-Sosa
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Yurina De Moya
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia
| | - Johnny Dias
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Guilherme Soares de Souza
- Laboratório de Implantação Iônica, Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Wilner Martinez-Lopez
- Ministry of Education and Culture, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Juliana da Silva
- Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS, Brazil
- Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Malu Siqueira Borges
- Laboratory of Genetic Toxicology. PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biotecnologia e em Ciências Médicas, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| | - Grethel León-Mejía
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, Barranquilla, 080002, Colombia.
| |
Collapse
|
12
|
Ornos ED, Cando LF, Catral CD, Quebral EP, Tantengco OA, Arevalo MVP, Dee EC. Molecular basis of sex differences in cancer: Perspective from Asia. iScience 2023; 26:107101. [PMID: 37404373 PMCID: PMC10316661 DOI: 10.1016/j.isci.2023.107101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Abstract
Cancer is a leading cause of mortality and morbidity globally. Sex differences in cancer are evident in death rates and treatment responses in several cancers. Asian patients have unique cancer epidemiology influenced by their genetic ancestry and sociocultural factors in the region. In this review, we show molecular associations that potentially mediate sex disparities observed in cancer in Asian populations. Differences in sex characteristics are evident at the cytogenetic, genetic, and epigenetic levels mediating processes that include cell cycle, oncogenesis, and metastasis. Larger clinical and in vitro studies that explore mechanisms can confirm the associations of these molecular markers. In-depth studies of these markers can reveal their importance as diagnostics, prognostics, and therapeutic efficacy markers. Sex differences should be considered in designing novel cancer therapeutics in this era of precision medicine.
Collapse
Affiliation(s)
- Eric David Ornos
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | - Leslie Faye Cando
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | | | - Elgin Paul Quebral
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
- Virology Laboratory, Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Ourlad Alzeus Tantengco
- College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Department of Biology, College of Science, De La Salle University, Manila 0922, Philippines
| | | | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10028, USA
| |
Collapse
|
13
|
Cardano M, Magni M, Alfieri R, Chan SY, Sabbioneda S, Buscemi G, Zannini L. Sex specific regulation of TSPY-Like 2 in the DNA damage response of cancer cells. Cell Death Dis 2023; 14:197. [PMID: 36918555 PMCID: PMC10015022 DOI: 10.1038/s41419-023-05722-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
Females have a lower probability to develop somatic cancers and a better response to chemotherapy than males. However, the reasons for these differences are still not well understood. The X-linked gene TSPY-Like 2 (TSPYL2) encodes for a putative tumor suppressor protein involved in cell cycle regulation and DNA damage response (DDR) pathways. Here, we demonstrate that in unstressed conditions TSPYL2 is maintained at low levels by MDM2-dependent ubiquitination and proteasome degradation. Upon genotoxic stress, E2F1 promotes TSPYL2 expression and protein accumulation in non-transformed cell lines. Conversely, in cancer cells, TSPYL2 accumulates only in females or in those male cancer cells that lost the Y-chromosome during the oncogenic process. Hence, we demonstrate that while TSPYL2 mRNA is induced in all the tested tumor cell lines after DNA damage, TSPYL2 protein stability is increased only in female cancer cells. Indeed, we found that TSPYL2 accumulation, in male cancer cells, is prevented by the Y-encoded protein SRY, which modulates MDM2 protein levels. In addition, we demonstrated that TSPYL2 accumulation is required to sustain cell growth arrest after DNA damage, possibly contributing to protect normal and female cancer cells from tumor progression. Accordingly, TSPYL2 has been found more frequently mutated in female-specific cancers. These findings demonstrate for the first time a sex-specific regulation of TSPYL2 in the DDR of cancer cells and confirm the existence of sexual dimorphism in DNA surveillance pathways.
Collapse
Affiliation(s)
- Miriana Cardano
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Martina Magni
- Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Roberta Alfieri
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong-Kong, Hong-Kong SAR, China
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Giacomo Buscemi
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy
| | - Laura Zannini
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 27100, Pavia, Italy.
| |
Collapse
|
14
|
Vera R, Juan-Vidal O, Safont-Aguilera MJ, de la Peña FA, Del Alba AG. Sex differences in the diagnosis, treatment and prognosis of cancer: the rationale for an individualised approach. Clin Transl Oncol 2023:10.1007/s12094-023-03112-w. [PMID: 36802013 DOI: 10.1007/s12094-023-03112-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Precision medicine in oncology aims to identify the most beneficial interventions based on a patient's individual features and disease. However, disparities exist when providing cancer care to patients based on an individual's sex. OBJECTIVE To discuss how sex differences impact the epidemiology, pathophysiology, clinical manifestations, disease progression, and response to treatment, with a focus on data from Spain. RESULTS Genetic and environmental factors (social or economic inequalities, power imbalances, and discrimination) that contribute to these differences adversely affect cancer patient health outcomes. Increased health professional awareness of sex differences is essential to the success of translational research and clinical oncological care. CONCLUSIONS The Sociedad Española de Oncología Médica created a Task Force group to raise oncologists' awareness and to implement measures to address sex differences in cancer patient management in Spain. This is a necessary and fundamental step towards optimizing precision medicine that will benefit all individuals equally and equitably.
Collapse
Affiliation(s)
- Ruth Vera
- Department of Medical Oncology, University Hospital of Navarra, Pamplona. IdiSNA, Navarra's Health Research Institute, Irunlarrea 3, 31190, Pamplona, Spain.
| | - Oscar Juan-Vidal
- Department of Medical Oncology, University Hospital La Fe, Valencia, Spain
| | - María José Safont-Aguilera
- Department of Medical Oncology, University General Hospital of Valencia, Valencia University, Valencia. CIBERONC, Valencia, Spain
| | - Francisco Ayala de la Peña
- Medical Oncology, Department of Haematology and Oncology, University General Hospital Morales Meseguer, Murcia, Spain
| | - Aránzazu González Del Alba
- Genitourinary Tumour Unit, Department of Medical Oncology, University Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| |
Collapse
|
15
|
Pressure Loading Induces DNA Damage in Human Hepatocyte Line L02 Cells via the ERK1/2-Dicer Signaling Pathway. Int J Mol Sci 2022; 23:ijms23105342. [PMID: 35628153 PMCID: PMC9140865 DOI: 10.3390/ijms23105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alteration of liver tissue mechanical microenvironment is proven to be a key factor for causing hepatocyte injury and even triggering the occurrence of hepatocellular carcinoma; however, the underlying mechanisms involved are not fully understood. In this study, using a customized, pressure-loading device, we assess the effect of pressure loading on DNA damage in human hepatocytes. We show that pressure loading leads to DNA damage and S-phase arresting in the cell cycle, and activates the DNA damage response in hepatocytes. Meanwhile, pressure loading upregulates Dicer expression, and its silencing exacerbates pressure-induced DNA damage. Moreover, pressure loading also activates ERK1/2 signaling molecules. Blockage of ERK1/2 signaling inhibits pressure-upregulated Dicer expression and exacerbates DNA damage by suppressing DNA damage response in hepatocytes. Our findings demonstrate that compressive stress loading induces hepatocyte DNA damage through the ERK1/2–Dicer signaling pathway, which provides evidence for a better understanding of the link between the altered mechanical environment and liver diseases.
Collapse
|