1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Cassidy LM, Russell M, Smith M, Delbarre G, Cheetham P, Manley H, Mattiangeli V, Breslin EM, Jackson I, McCann M, Little H, O'Connor CG, Heaslip B, Lawson D, Endicott P, Bradley DG. Continental influx and pervasive matrilocality in Iron Age Britain. Nature 2025; 637:1136-1142. [PMID: 39814899 PMCID: PMC11779635 DOI: 10.1038/s41586-024-08409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
Roman writers found the relative empowerment of Celtic women remarkable1. In southern Britain, the Late Iron Age Durotriges tribe often buried women with substantial grave goods2. Here we analyse 57 ancient genomes from Durotrigian burial sites and find an extended kin group centred around a single maternal lineage, with unrelated (presumably inward migrating) burials being predominantly male. Such a matrilocal pattern is undescribed in European prehistory, but when we compare mitochondrial haplotype variation among European archaeological sites spanning six millennia, British Iron Age cemeteries stand out as having marked reductions in diversity driven by the presence of dominant matrilines. Patterns of haplotype sharing reveal that British Iron Age populations form fine-grained geographical clusters with southern links extending across the channel to the continent. Indeed, whereas most of Britain shows majority genomic continuity from the Early Bronze Age to the Iron Age, this is markedly reduced in a southern coastal core region with persistent cross-channel cultural exchange3. This southern core has evidence of population influx in the Middle Bronze Age but also during the Iron Age. This is asynchronous with the rest of the island and points towards a staged, geographically granular absorption of continental influence, possibly including the acquisition of Celtic languages.
Collapse
Affiliation(s)
- Lara M Cassidy
- Department of Genetics, Trinity College Dublin, Dublin, Ireland.
| | - Miles Russell
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Martin Smith
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Gabrielle Delbarre
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Paul Cheetham
- Department of Archaeology and Anthropology, Bournemouth University, Bournemouth, UK
| | - Harry Manley
- Department of Life and Environmental Sciences, Bournemouth University, Bournemouth, UK
| | | | - Emily M Breslin
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Iseult Jackson
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Maeve McCann
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Harry Little
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Beth Heaslip
- Department of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Daniel Lawson
- School of Mathematics, University of Bristol, Bristol, UK
| | - Phillip Endicott
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Linguistics, University of Hawai'i at Mānoa, Mānoa, HI, USA
- DFG Center for Advanced Studies, University of Tübingen, Tübingen, Germany
- Éco-anthropologie, Musée de l'Homme, Paris, France
| | | |
Collapse
|
3
|
Ravasini F, Kabral H, Solnik A, de Gennaro L, Montinaro F, Hui R, Delpino C, Finocchi S, Giroldini P, Mei O, Beck De Lotto MA, Cilli E, Hajiesmaeil M, Pistacchia L, Risi F, Giacometti C, Scheib CL, Tambets K, Metspalu M, Cruciani F, D'Atanasio E, Trombetta B. The genomic portrait of the Picene culture provides new insights into the Italic Iron Age and the legacy of the Roman Empire in Central Italy. Genome Biol 2024; 25:292. [PMID: 39567978 PMCID: PMC11580440 DOI: 10.1186/s13059-024-03430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The Italic Iron Age is characterized by the presence of various ethnic groups partially examined from a genomic perspective. To explore the evolution of Iron Age Italic populations and the genetic impact of Romanization, we focus on the Picenes, one of the most fascinating pre-Roman civilizations, who flourished on the Middle Adriatic side of Central Italy between the 9th and the 3rd century BCE, until the Roman colonization. RESULTS More than 50 samples are reported, spanning more than 1000 years of history from the Iron Age to Late Antiquity. Despite cultural diversity, our analysis reveals no major differences between the Picenes and other coeval populations, suggesting a shared genetic history of the Central Italian Iron Age ethnic groups. Nevertheless, a slight genetic differentiation between populations along the Adriatic and Tyrrhenian coasts can be observed, possibly due to different population dynamics in the two sides of Italy and/or genetic contacts across the Adriatic Sea. Additionally, we identify several individuals with ancestries deviating from their general population. Lastly, in our Late Antiquity site, we observe a drastic change in the genetic landscape of the Middle Adriatic region, indicating a relevant influx from the Near East, possibly as a consequence of Romanization. CONCLUSIONS Our findings, consistently with archeological hypotheses, suggest genetic interactions across the Adriatic Sea during the Bronze/Iron Age and a high level of individual mobility typical of cosmopolitan societies. Finally, we highlight the role of the Roman Empire in shaping genetic and phenotypic changes that greatly impact the Italian peninsula.
Collapse
Affiliation(s)
- Francesco Ravasini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Solnik
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Francesco Montinaro
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Ruoyun Hui
- Alan Turing Institute, London, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Chiara Delpino
- Superintendence Archaeology, Fine Arts and Landscape for the Provinces of Frosinone and Latina, Ministry of Cultural Heritage, Rome, Italy
| | - Stefano Finocchi
- Superintendence Archaeology, Fine Arts and Landscape of Ancona, Ministry of Cultural Heritage, Ancona, Italy
| | - Pierluigi Giroldini
- Superintendence Archaeology, Fine Arts and Landscape for the Metropolitan City of Florence and the Provinces of Pistoia and Prato, Ministry of Cultural Heritage, Florence, Italy
| | - Oscar Mei
- Department of Communication Sciences, Humanities and International Studies, University of Urbino, Urbino, Italy
| | | | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Mogge Hajiesmaeil
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Letizia Pistacchia
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Flavia Risi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Chiara Giacometti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Christiana Lyn Scheib
- Department of Zoology, University of Cambridge and St John's College, University of Cambridge, Cambridge, UK
| | | | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fulvio Cruciani
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | | | - Beniamino Trombetta
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Akbari A, Barton AR, Gazal S, Li Z, Kariminejad M, Perry A, Zeng Y, Mittnik A, Patterson N, Mah M, Zhou X, Price AL, Lander ES, Pinhasi R, Rohland N, Mallick S, Reich D. Pervasive findings of directional selection realize the promise of ancient DNA to elucidate human adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613021. [PMID: 39314480 PMCID: PMC11419161 DOI: 10.1101/2024.09.14.613021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present a method for detecting evidence of natural selection in ancient DNA time-series data that leverages an opportunity not utilized in previous scans: testing for a consistent trend in allele frequency change over time. By applying this to 8433 West Eurasians who lived over the past 14000 years and 6510 contemporary people, we find an order of magnitude more genome-wide significant signals than previous studies: 347 independent loci with >99% probability of selection. Previous work showed that classic hard sweeps driving advantageous mutations to fixation have been rare over the broad span of human evolution, but in the last ten millennia, many hundreds of alleles have been affected by strong directional selection. Discoveries include an increase from ~0% to ~20% in 4000 years for the major risk factor for celiac disease at HLA-DQB1; a rise from ~0% to ~8% in 6000 years of blood type B; and fluctuating selection at the TYK2 tuberculosis risk allele rising from ~2% to ~9% from ~5500 to ~3000 years ago before dropping to ~3%. We identify instances of coordinated selection on alleles affecting the same trait, with the polygenic score today predictive of body fat percentage decreasing by around a standard deviation over ten millennia, consistent with the "Thrifty Gene" hypothesis that a genetic predisposition to store energy during food scarcity became disadvantageous after farming. We also identify selection for combinations of alleles that are today associated with lighter skin color, lower risk for schizophrenia and bipolar disease, slower health decline, and increased measures related to cognitive performance (scores on intelligence tests, household income, and years of schooling). These traits are measured in modern industrialized societies, so what phenotypes were adaptive in the past is unclear. We estimate selection coefficients at 9.9 million variants, enabling study of how Darwinian forces couple to allelic effects and shape the genetic architecture of complex traits.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Annabel Perry
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yating Zeng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Scheib CL, Hui R, Rose AK, D’Atanasio E, Inskip SA, Dittmar J, Cessford C, Griffith SJ, Solnik A, Wiseman R, Neil B, Biers T, Harknett SJ, Sasso S, Biagini SA, Runfeldt G, Duhig C, Evans C, Metspalu M, Millett MJ, O’Connell TC, Robb JE, Kivisild T. Low Genetic Impact of the Roman Occupation of Britain in Rural Communities. Mol Biol Evol 2024; 41:msae168. [PMID: 39268685 PMCID: PMC11393495 DOI: 10.1093/molbev/msae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024] Open
Abstract
The Roman period saw the empire expand across Europe and the Mediterranean, including much of what is today Great Britain. While there is written evidence of high mobility into and out of Britain for administrators, traders, and the military, the impact of imperialism on local, rural population structure, kinship, and mobility is invisible in the textual record. The extent of genetic change that occurred in Britain during the Roman military occupation remains underexplored. Here, using genome-wide data from 52 ancient individuals from eight sites in Cambridgeshire covering the period of Roman occupation, we show low levels of genetic ancestry differentiation between Romano-British sites and indications of larger populations than in the Bronze Age and Neolithic. We find no evidence of long-distance migration from elsewhere in the Empire, though we do find one case of possible temporary mobility within a family unit during the Late Romano-British period. We also show that the present-day patterns of genetic ancestry composition in Britain emerged after the Roman period.
Collapse
Affiliation(s)
- Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
- St John's College, University of Cambridge, Cambridge CB2 1TP, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - Ruoyun Hui
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- Alan Turing Institute, British Library, London NW1 2DB, UK
| | - Alice K Rose
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - Eugenia D’Atanasio
- Institute of Molecular Biology and Pathology, IBPM CNR, Rome 00185, Italy
| | - Sarah A Inskip
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- School of Archaeology and Ancient History, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Jenna Dittmar
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
| | - Craig Cessford
- Cambridge Archaeological Unit, Department of Archaeology, University of Cambridge, Cambridge CB3 0DT, UK
| | - Samuel J Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Rob Wiseman
- Core Facility, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Benjamin Neil
- Core Facility, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Trish Biers
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | | | - Stefania Sasso
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
| | - Simone A Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003 Barcelona, Spain
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | | | - Corinne Duhig
- Wolfson College, University of Cambridge, Cambridge CB3 9BB, UK
| | - Christopher Evans
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
| | - Martin J Millett
- Faculty of Classics, University of Cambridge, Cambridge CB3 9DA, UK
| | - Tamsin C O’Connell
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - John E Robb
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu Tartu 51010, Estonia
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Arzelier A, De Belvalet H, Pemonge MH, Garberi P, Binder D, Duday H, Deguilloux MF, Pruvost M. Ancient DNA sheds light on the funerary practices of late Neolithic collective burial in southern France. Proc Biol Sci 2024; 291:rspb20241215. [PMID: 39191285 PMCID: PMC11349438 DOI: 10.1098/rspb.2024.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
The Aven de la Boucle (Corconne, Gard, southern France) is a karst shaft used as a collective burial between 3600 and 2800 cal BCE. The site encompasses the skeletal remains of approximately 75 individuals comprising a large majority of adult individuals, represented by scattered and commingled remains. To date, few studies have explored the potential of ancient DNA to tackle the documentation of Neolithic collective burials, and the funerary selection rules within such structures remain largely debated. In this study, we combine genomic analysis of 37 individuals with archaeo-anthropological data and Bayesian modelling of radiocarbon dates. Through this multidisciplinary approach, we aim to characterize the identity of the deceased and their relationships, as well as untangle the genetic diversity and funerary dynamics of this community. Genomic results identify 76% of male Neolithic individuals, suggesting a marked sex-biased selection. Available data emphasize the importance of biological relatedness and a male-mediated transmission of social status, as the affiliation to a specific male-lineage appears as a preponderant selection factor. The genomic results argue in favour of 'continuous' deposits between 3600 and 2800 BCE, carried out by the same community, despite cultural changes reflected by the ceramic material.
Collapse
Affiliation(s)
- Ana Arzelier
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Harmony De Belvalet
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-Hélène Pemonge
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Pauline Garberi
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Didier Binder
- Université Côte d’Azur, CNRS, Cultures, Environnements. Préhistoire, Antiquité, Moyen-Âge (CEPAM UMR 7264), Nice06300, France
| | - Henri Duday
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Marie-France Deguilloux
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| | - Mélanie Pruvost
- Université de Bordeaux, CNRS, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie (PACEA UMR 5199), Pessac Cedex33615, France
| |
Collapse
|
7
|
Sasso S, Saag L, Spros R, Beneker O, Molinaro L, Biagini SA, Lehouck A, Van De Vijver K, Hui R, D’Atanasio E, Kushniarevich A, Kabral H, Metspalu E, Guellil M, Ali MQA, Geypen J, Hoebreckx M, Berk B, De Winter N, Driesen P, Pijpelink A, Van Damme P, Scheib CL, Deschepper E, Deckers P, Snoeck C, Dewilde M, Ervynck A, Tambets K, Larmuseau MHD, Kivisild T. Capturing the fusion of two ancestries and kinship structures in Merovingian Flanders. Proc Natl Acad Sci U S A 2024; 121:e2406734121. [PMID: 38913897 PMCID: PMC11228521 DOI: 10.1073/pnas.2406734121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
The Merovingian period (5th to 8th cc AD) was a time of demographic, socioeconomic, cultural, and political realignment in Western Europe. Here, we report the whole-genome shotgun sequence data of 30 human skeletal remains from a coastal Late Merovingian site of Koksijde (675 to 750 AD), alongside 18 remains from two Early to Late Medieval sites in present-day Flanders, Belgium. We find two distinct ancestries, one shared with Early Medieval England and the Netherlands, while the other, minor component, reflecting likely continental Gaulish ancestry. Kinship analyses identified no large pedigrees characteristic to elite burials revealing instead a high modularity of distant relationships among individuals of the main ancestry group. In contrast, individuals with >90% Gaulish ancestry had no kinship links among sampled individuals. Evidence for population structure and major differences in the extent of Gaulish ancestry in the main group, including in a mother-daughter pair, suggests ongoing admixture in the community at the time of their burial. The isotopic and genetic evidence combined supports a model by which the burials, representing an established coastal nonelite community, had incorporated migrants from inland populations. The main group of burials at Koksijde shows an abundance of >5 cM long shared allelic intervals with the High Medieval site nearby, implying long-term continuity and suggesting that similarly to Britain, the Early Medieval ancestry shifts left a significant and long-lasting impact on the genetic makeup of the Flemish population. We find substantial allele frequency differences between the two ancestry groups in pigmentation and diet-associated variants, including those linked with lactase persistence, likely reflecting ancestry change rather than local adaptation.
Collapse
Affiliation(s)
- Stefania Sasso
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Rachèl Spros
- Research Unit: Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, 1050Brussels, Belgium
- Research Unit: Social History of Capitalism, Vrije Universiteit Brussel, 1050Brussels, Belgium
| | - Owyn Beneker
- Department of Human Genetics, KU Leuven, 3000Leuven, Belgium
| | | | - Simone A. Biagini
- Department of Human Genetics, KU Leuven, 3000Leuven, Belgium
- Institut de Biologia Evolutiva, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003Barcelona, Spain
| | | | | | - Ruoyun Hui
- Alan Turing Institute, NW1 2DBLondon, United Kingdom
| | - Eugenia D’Atanasio
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Alena Kushniarevich
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Helja Kabral
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | - Meriam Guellil
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu51010, Estonia
- Department of Evolutionary Anthropology, University of Vienna, 1030Vienna, Austria
| | | | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, 6231ECMeerssen, Netherlands
| | | | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 5237JG 's-Hertogenbosch, Netherlands
| | - Philip Van Damme
- Department of Neurology, KU Leuven and Center for Brain & Disease Research Vlaamse Instituut voor Biotechnologie, 3000Leuven, Belgium
- Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB, 3000Leuven, Belgium
| | - Christiana L. Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu51010, Estonia
- Department of Zoology, University of Cambridge, CB2 3EJCambridge, United Kingdom
- Department of Archaeology, University of Cambridge, CB2 3DZCambridge, United Kingdom
- St John’s College, University of Cambridge, CB2 1TPCambridge, United Kingdom
| | - Ewoud Deschepper
- Historical Archaeology Research Group, Department of Archaeology, Ghent University, 9000Ghent, Belgium
| | | | - Christophe Snoeck
- Research Unit: Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, 1050Brussels, Belgium
| | | | | | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu51010, Estonia
| | | | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu51010, Estonia
- Department of Human Genetics, KU Leuven, 3000Leuven, Belgium
| |
Collapse
|
8
|
Piffer D, Kirkegaard EOW. Evolutionary Trends of Polygenic Scores in European Populations From the Paleolithic to Modern Times. Twin Res Hum Genet 2024; 27:30-49. [PMID: 38444325 DOI: 10.1017/thg.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This study examines the temporal and geographical evolution of polygenic scores (PGSs) across cognitive measures (Educational Attainment [EA], Intelligence Quotient [IQ]), Socioeconomic Status (SES), and psychiatric conditions (Autism Spectrum Disorder [ASD], schizophrenia [SCZ]) in various populations. Our findings indicate positive directional selection for EA, IQ, and SES traits over the past 12,000 years. Schizophrenia and autism, while similar, showed different temporal patterns, aligning with theories suggesting they are psychological opposites. We observed a decline in PGS for neuroticism and depression, likely due to their genetic correlations and pleiotropic effects on intelligence. Significant PGS shifts from the Upper Paleolithic to the Neolithic periods suggest lifestyle and cognitive demand changes, particularly during the Neolithic Revolution. The study supports a mild hypothesis of Gregory Clark's model, showing a noticeable rise in genetic propensities for intelligence, academic achievement and professional status across Europe from the Middle Ages to the present. While latitude strongly influenced height, its impact on schizophrenia and autism was smaller and varied. Contrary to the cold winters theory, the study found no significant correlation between latitude and intelligence.
Collapse
|