1
|
Yalcintepe S, Maras T, Kizilyar I, Sezginer Guler H, Zhuri D, Atli E, Ozen Y, Gurkan H. Homozygous Paternally Inherited ASPA Variant in a Patient with Canavan Disease. Mol Syndromol 2024; 15:284-288. [PMID: 39119446 PMCID: PMC11305664 DOI: 10.1159/000536386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/14/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Canavan disease is an autosomal recessive disorder that causes accumulation of N-acetyl ASPArtic acid in the brain due to ASPArtoacylase deficiency with homozygous or compound heterozygous pathogenic variants in the ASPA gene located on the short arm of chromosome 17. Clinical findings are hypotonia, progressive macrocephaly, deafness, nystagmus, blindness, and brain atrophy. Case Presentation A one-year-old female case was evaluated in our medical genetics clinic for hypotonia, nystagmus, and strabismus. Chromosome analysis and array-comparative genomic hybridization showed no pathology. Clinical exome sequencing by next-generation sequencing was performed and a homozygous likely pathogenic variant NM_000049.4(ASPA):c.857C > A p.(Ala286Asp) was identified. Sanger sequencing of the parents showed that the index case had a homozygous genotype, the father was heterozygous and the mother had a wild genotype for the identified variant in ASPA. A single nucleotide polymorphism (SNP) array test was planned for the family to explain this homozygosity and a loss of maternal heterozygosity was determined in the 17p13.3-p13.2 region of the ASPA gene. Conclusion In this report, we aimed to present the first case of Canavan disease with maternal loss of heterozygosity in the ASPA gene.
Collapse
Affiliation(s)
- Sinem Yalcintepe
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Tuba Maras
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ilke Kizilyar
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hazal Sezginer Guler
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Drenushe Zhuri
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Engin Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Yasemin Ozen
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
2
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
3
|
Pazzin DB, Previato TTR, Budelon Gonçalves JI, Zanirati G, Xavier FAC, da Costa JC, Marinowic DR. Induced Pluripotent Stem Cells and Organoids in Advancing Neuropathology Research and Therapies. Cells 2024; 13:745. [PMID: 38727281 PMCID: PMC11083827 DOI: 10.3390/cells13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.
Collapse
Affiliation(s)
- Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Fernando Antonio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| |
Collapse
|
4
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
5
|
Feng L, Chao J, Zhang M, Pacquing E, Hu W, Shi Y. Developing a human iPSC-derived three-dimensional myelin spheroid platform for modeling myelin diseases. iScience 2023; 26:108037. [PMID: 37867939 PMCID: PMC10589867 DOI: 10.1016/j.isci.2023.108037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/11/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Myelin defects cause a collection of myelin disorders in the brain. The lack of human models has limited us from better understanding pathological mechanisms of myelin diseases. While human induced pluripotent stem cell (hiPSC)-derived spheroids or organoids have been used to study brain development and disorders, it has been difficult to recapitulate mature myelination in these structures. Here, we have developed a method to generate three-dimensional (3D) myelin spheroids from hiPSCs in a robust and reproducible manner. Using this method, we generated myelin spheroids from patient iPSCs to model Canavan disease (CD), a demyelinating disorder. By using CD patient iPSC-derived myelin spheroids treated with N-acetyl-aspartate (NAA), we were able to recapitulate key pathological features of the disease and show that high-level NAA is sufficient to induce toxicity on myelin sheaths. Our study has established a 3D human cellular platform to model human myelin diseases for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Lizhao Feng
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China
| | - Jianfei Chao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Mingzi Zhang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Elizabeth Pacquing
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Feng L, Chao J, Ye P, Luong Q, Sun G, Liu W, Cui Q, Flores S, Jackson N, Shayento ANH, Sun G, Liu Z, Hu W, Shi Y. Developing Hypoimmunogenic Human iPSC-Derived Oligodendrocyte Progenitor Cells as an Off-The-Shelf Cell Therapy for Myelin Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206910. [PMID: 37271923 PMCID: PMC10427412 DOI: 10.1002/advs.202206910] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Demyelinating disorders are among the most common and debilitating diseases in neurology. Canavan disease (CD) is a lethal demyelinating disease caused by mutation of the aspartoacylase (ASPA) gene, which leads to the accumulation of its substrate N-acetyl-l-aspartate (NAA), and consequently demyelination and vacuolation in the brain. In this study, hypoimmunogenic human induced pluripotent stem cell (iPSC)-derived oligodendrocyte progenitor cells (OPC) are developed from a healthy donor as an "off-the-shelf" cell therapy. Hypoimmunogenic iPSCs are generated through CRISPR/Cas9 editing of the human leukocyte antigen (HLA) molecules in healthy donor-derived iPSCs and differentiated into OPCs. The OPCs are engrafted into the brains of CD (nur7) mice and exhibit widespread distribution in the brain. The engrafted OPCs mature into oligodendrocytes that express the endogenous wildtype ASPA gene. Consequently, the transplanted mice exhibit elevated human ASPA expression and enzymatic activity and reduced NAA level in the brain. The transplanted OPCs are able to rescue major pathological features of CD, including defective myelination, extensive vacuolation, and motor function deficits. Moreover, the hypoimmunogenic OPCs exhibit low immunogenicity both in vitro and in vivo. The hypoimmunogenic OPCs can be used as "off-the-shelf" universal donor cells to treat various CD patients and many other demyelinating disorders, especially autoimmune demyelinating diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Lizhao Feng
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Jianfei Chao
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Peng Ye
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Qui Luong
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Guoqiang Sun
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Wei Liu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Qi Cui
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Sergio Flores
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Natasha Jackson
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Afm Nazmul Hoque Shayento
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Guihua Sun
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Zhenqing Liu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Weidong Hu
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
- Department of Immunology and TheranosticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Yanhong Shi
- Department of Neurodegenerative DiseasesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| |
Collapse
|
7
|
Nowak I, Madej M, Secemska J, Sarna R, Strzalka-Mrozik B. Virus-Based Biological Systems as Next-Generation Carriers for the Therapy of Central Nervous System Diseases. Pharmaceutics 2023; 15:1931. [PMID: 37514117 PMCID: PMC10384784 DOI: 10.3390/pharmaceutics15071931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Central nervous system (CNS) diseases are currently a major challenge in medicine. One reason is the presence of the blood-brain barrier, which is a significant limitation for currently used medicinal substances that are characterized by a high molecular weight and a short half-life. Despite the application of nanotechnology, there is still the problem of targeting and the occurrence of systemic toxicity. Viral vectors and virus-like particles (VLPs) may provide a promising solution to these challenges. Their small size, biocompatibility, ability to carry medicinal substances, and specific targeting of neural cells make them useful in research when formulating a new generation of biological carriers. Additionally, the possibility of genetic modification has the potential for gene therapy. Among the most promising viral vectors are adeno-associated viruses, adenoviruses, and retroviruses. This is due to their natural tropism to neural cells, as well as the possibility of genetic and surface modification. Moreover, VLPs that are devoid of infectious genetic material in favor of increasing capacity are also leading the way for research on new drug delivery systems. The aim of this study is to review the most recent reports on the use of viral vectors and VLPs in the treatment of selected CNS diseases.
Collapse
Affiliation(s)
- Ilona Nowak
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Julia Secemska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Robert Sarna
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
8
|
Fröhlich D, Kalotay E, von Jonquieres G, Bongers A, Lee B, Suchowerska AK, Housley GD, Klugmann M. Dual-function AAV gene therapy reverses late-stage Canavan disease pathology in mice. Front Mol Neurosci 2022; 15:1061257. [PMID: 36568275 PMCID: PMC9772617 DOI: 10.3389/fnmol.2022.1061257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The leukodystrophy Canavan disease is a fatal white matter disorder caused by loss-of-function mutations of the aspartoacylase-encoding ASPA gene. There are no effective treatments available and experimental gene therapy trials have failed to provide sufficient amelioration from Canavan disease symptoms. Preclinical studies suggest that Canavan disease-like pathology can be addressed by either ASPA gene replacement therapy or by lowering the expression of the N-acetyl-L-aspartate synthesizing enzyme NAT8L. Both approaches individually prevent or even reverse pathological aspects in Canavan disease mice. Here, we combined both strategies and assessed whether intracranial adeno-associated virus-mediated gene delivery to a Canavan disease mouse model at 12 weeks allows for reversal of existing pathology. This was enabled by a single vector dual-function approach. In vitro and in vivo biopotency assessment revealed significant knockdown of neuronal Nat8l paired with robust ectopic aspartoacylase expression. Following nomination of the most efficient cassette designs, we performed proof-of-concept studies in post-symptomatic Aspa-null mice. Late-stage gene therapy resulted in a decrease of brain vacuoles and long-term reversal of all pathological hallmarks, including loss of body weight, locomotor impairments, elevated N-acetyl-L-aspartate levels, astrogliosis, and demyelination. These data suggest feasibility of a dual-function vector combination therapy, directed at replacing aspartoacylase with concomitantly suppressing N-acetyl-L-aspartate production, which holds potential to permanently alleviate Canavan disease symptoms and expands the therapeutic window towards a treatment option for adult subjects.
Collapse
Affiliation(s)
- Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia,*Correspondence: Dominik Fröhlich,
| | - Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW, Australia
| | - Brendan Lee
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra K. Suchowerska
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia,Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany,Matthias Klugmann,
| |
Collapse
|