1
|
McMullan E, Joladarashi D, Kishore R. Unpacking Exosomes: A Therapeutic Frontier for Cardiac Repair. Curr Cardiol Rep 2025; 27:73. [PMID: 40111702 PMCID: PMC11925971 DOI: 10.1007/s11886-025-02225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW The rising global prevalence of cardiovascular disease is driving the need for innovative biotherapeutics. Recently, exosomes-extracellular vesicles involved in paracrine signaling have shown promise in aiding heart repair associated with cardiovascular conditions. Their therapeutic potential encompasses several beneficial mechanisms, including anti-fibrosis, anti-inflammation, pro-angiogenesis, anti-oxidation, and anti-apoptosis, all contributing to improved cardiac function. This review provides a comprehensive overview of exosomes and highlights the latest research on their effectiveness in addressing current challenges in regenerative cardiac medicine. RECENT FINDINGS Current approaches revolve around elucidating and enhancing how different cell types, cargo, and delivery methods impact healing in a pathological cardiovascular environment. The emerging field of therapeutic exosome research is promising for cardiac regeneration due to the beneficial effects of exosomal cargo. The expansion of mechanistic knowledge and the optimization of techniques are required before standard clinical application.
Collapse
Affiliation(s)
- Elena McMullan
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Garmany A, Arrell DK, Yamada S, Jeon R, Behfar A, Park S, Terzic A. Decoded cardiopoietic cell secretome linkage to heart repair biosignature. Stem Cells Transl Med 2024; 13:1144-1159. [PMID: 39259666 PMCID: PMC11555478 DOI: 10.1093/stcltm/szae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/03/2024] [Indexed: 09/13/2024] Open
Abstract
Cardiopoiesis-primed human stem cells exert sustained benefit in treating heart failure despite limited retention following myocardial delivery. To assess potential paracrine contribution, the secretome of cardiopoiesis conditioned versus naïve human mesenchymal stromal cells was decoded by directed proteomics augmented with machine learning and systems interrogation. Cardiopoiesis doubled cellular protein output generating a distinct secretome that segregated the conditioned state. Altering the expression of 1035 secreted proteins, cardiopoiesis reshaped the secretome across functional classes. The resolved differential cardiopoietic secretome was enriched in mesoderm development and cardiac progenitor signaling processes, yielding a cardiovasculogenic profile bolstered by upregulated cardiogenic proteins. In tandem, cardiopoiesis enhanced the secretion of immunomodulatory proteins associated with cytokine signaling, leukocyte migration, and chemotaxis. Network analysis integrated the differential secretome within an interactome of 1745 molecules featuring prioritized regenerative processes. Secretome contribution to the repair signature of cardiopoietic cell-treated infarcted hearts was assessed in a murine coronary ligation model. Intramyocardial delivery of cardiopoietic cells improved the performance of failing hearts, with undirected proteomics revealing 50 myocardial proteins responsive to cell therapy. Pathway analysis linked the secretome to cardiac proteome remodeling, pinpointing 17 cardiopoiesis-upregulated secretome proteins directly upstream of 44% of the cell therapy-responsive cardiac proteome. Knockout, in silico, of this 22-protein secretome-dependent myocardial ensemble eliminated indices of the repair signature. Accordingly, in vivo, cell therapy rendered the secretome-dependent myocardial proteome of an infarcted heart indiscernible from healthy counterparts. Thus, the secretagogue effect of cardiopoiesis transforms the human stem cell secretome, endows regenerative competency, and upregulates candidate paracrine effectors of cell therapy-mediated molecular restitution.
Collapse
Affiliation(s)
- Armin Garmany
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - D Kent Arrell
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Section of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ryounghoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Sungjo Park
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Medical Genetics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Menasché P. Human PSC-derived cardiac cells and their products: therapies for cardiac repair. J Mol Cell Cardiol 2023; 183:14-21. [PMID: 37595498 DOI: 10.1016/j.yjmcc.2023.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Despite the dramatic improvements in the management of patients with chronic heart failure which have occurred over the last decades, some of them still exhaust conventional drug-based therapies without being eligible for more aggressive options like heart transplantation or implantation of a left ventricular assist device. Cell therapy has thus emerged as a possible means of filling this niche. Multiple cell types have now been tested both in the laboratory but also in the clinics and it is fair to acknowledge that none of the clinical trials have yet conclusively proven the efficacy of cell-based approaches. These clinical studies, however, have entailed the use of cells from various sources but of non-cardiac lineage origins. Although this might not be the main reason for their failures, the discovery of pluripotent stem cells capable of generating cardiomyocytes now raises the hope that such cardiac-committed cells could be therapeutically more effective. In this review, we will first describe where we currently are with regard to the clinical trials using PSC-differentiated cells and discuss the main issues which remain to be addressed. In parallel, because the capacity of cells to stably engraft in the recipient heart has increasingly been questioned, it has been hypothesized that a major mechanism of action could be the cell-triggered release of biomolecules that foster host-associated reparative pathways. Thus, in the second part of this review, we will discuss the rationale, clinically relevant advantages and pitfalls associated with the use of these PSC "products".
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université Paris Cité, Inserm, PARCC, F-75015 Paris, France.
| |
Collapse
|
4
|
Kaushal S, Hare JM, Hoffman JR, Boyd RM, Ramdas KN, Pietris N, Kutty S, Tweddell JS, Husain SA, Menon SC, Lambert LM, Danford DA, Kligerman SJ, Hibino N, Korutla L, Vallabhajosyula P, Campbell MJ, Khan A, Naioti E, Yousefi K, Mehranfard D, McClain-Moss L, Oliva AA, Davis ME. Intramyocardial cell-based therapy with Lomecel-B during bidirectional cavopulmonary anastomosis for hypoplastic left heart syndrome: the ELPIS phase I trial. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead002. [PMID: 36950450 PMCID: PMC10026620 DOI: 10.1093/ehjopen/oead002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Aims Hypoplastic left heart syndrome (HLHS) survival relies on surgical reconstruction of the right ventricle (RV) to provide systemic circulation. This substantially increases the RV load, wall stress, maladaptive remodelling, and dysfunction, which in turn increases the risk of death or transplantation. Methods and results We conducted a phase 1 open-label multicentre trial to assess the safety and feasibility of Lomecel-B as an adjunct to second-stage HLHS surgical palliation. Lomecel-B, an investigational cell therapy consisting of allogeneic medicinal signalling cells (MSCs), was delivered via intramyocardial injections. The primary endpoint was safety, and measures of RV function for potential efficacy were obtained. Ten patients were treated. None experienced major adverse cardiac events. All were alive and transplant-free at 1-year post-treatment, and experienced growth comparable to healthy historical data. Cardiac magnetic resonance imaging (CMR) suggested improved tricuspid regurgitant fraction (TR RF) via qualitative rater assessment, and via significant quantitative improvements from baseline at 6 and 12 months post-treatment (P < 0.05). Global longitudinal strain (GLS) and RV ejection fraction (EF) showed no declines. To understand potential mechanisms of action, circulating exosomes from intramyocardially transplanted MSCs were examined. Computational modelling identified 54 MSC-specific exosome ribonucleic acids (RNAs) corresponding to changes in TR RF, including miR-215-3p, miR-374b-3p, and RNAs related to cell metabolism and MAPK signalling. Conclusion Intramyocardially delivered Lomecel-B appears safe in HLHS patients and may favourably affect RV performance. Circulating exosomes of transplanted MSC-specific provide novel insight into bioactivity. Conduct of a controlled phase trial is warranted and is underway.Trial registration number NCT03525418.
Collapse
Affiliation(s)
- Sunjay Kaushal
- The Heart Center, Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Joshua M Hare
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
- Department of Medicine and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Jessica R Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Riley M Boyd
- The Heart Center, Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Kevin N Ramdas
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Nicholas Pietris
- Division of Pediatric Cardiology, Department of Pediatrics, University of Maryland School of Medicine, 110 S. Paca Street, Baltimore, MD 21201, USA
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and Johns Hopkins University, 1800 Orleans St., Baltimore, MD 21287, USA
| | - James S Tweddell
- Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - S Adil Husain
- Division of Pediatric Cardiothoracic Surgery, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, Utah 84108, USA
| | - Shaji C Menon
- Department of Radiology, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Linda M Lambert
- Division of Pediatric Cardiology, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| | - David A Danford
- Division of Cardiology, Children's Hospital & Medical Center, Nebraska Medicine, Department of Pediatrics, University of Nebraska, 983332 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seth J Kligerman
- Department of Radiology, University of California San Diego, 200 W. Arbor Drive, San Diego, CA 92103, USA
| | - Narutoshi Hibino
- Department of Surgery, The University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, 789 Howard Avenue, New Haven, CT 06510, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, 789 Howard Avenue, New Haven, CT 06510, USA
| | - Michael J Campbell
- Department of Pediatrics, Duke University School of Medicine, 2301 Erwin Road, Durham, NC 27705, USA
| | - Aisha Khan
- Department of Medicine and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Eric Naioti
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Keyvan Yousefi
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | | | | | - Anthony A Oliva
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|