1
|
Friedrich VD, Pennitz P, Wyler E, Adler JM, Postmus D, Müller K, Teixeira Alves LG, Prigann J, Pott F, Vladimirova D, Hoefler T, Goekeri C, Landthaler M, Goffinet C, Saliba AE, Scholz M, Witzenrath M, Trimpert J, Kirsten H, Nouailles G. Neural network-assisted humanisation of COVID-19 hamster transcriptomic data reveals matching severity states in human disease. EBioMedicine 2024; 108:105312. [PMID: 39317638 DOI: 10.1016/j.ebiom.2024.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Translating findings from animal models to human disease is essential for dissecting disease mechanisms, developing and testing precise therapeutic strategies. The coronavirus disease 2019 (COVID-19) pandemic has highlighted this need, particularly for models showing disease severity-dependent immune responses. METHODS Single-cell transcriptomics (scRNAseq) is well poised to reveal similarities and differences between species at the molecular and cellular level with unprecedented resolution. However, computational methods enabling detailed matching are still scarce. Here, we provide a structured scRNAseq-based approach that we applied to scRNAseq from blood leukocytes originating from humans and hamsters affected with moderate or severe COVID-19. FINDINGS Integration of data from patients with COVID-19 with two hamster models that develop moderate (Syrian hamster, Mesocricetus auratus) or severe (Roborovski hamster, Phodopus roborovskii) disease revealed that most cellular states are shared across species. A neural network-based analysis using variational autoencoders quantified the overall transcriptomic similarity across species and severity levels, showing highest similarity between neutrophils of Roborovski hamsters and patients with severe COVID-19, while Syrian hamsters better matched patients with moderate disease, particularly in classical monocytes. We further used transcriptome-wide differential expression analysis to identify which disease stages and cell types display strongest transcriptional changes. INTERPRETATION Consistently, hamsters' response to COVID-19 was most similar to humans in monocytes and neutrophils. Disease-linked pathways found in all species specifically related to interferon response or inhibition of viral replication. Analysis of candidate genes and signatures supported the results. Our structured neural network-supported workflow could be applied to other diseases, allowing better identification of suitable animal models with similar pathomechanisms across species. FUNDING This work was supported by German Federal Ministry of Education and Research, (BMBF) grant IDs: 01ZX1304B, 01ZX1604B, 01ZX1906A, 01ZX1906B, 01KI2124, 01IS18026B and German Research Foundation (DFG) grant IDs: 14933180, 431232613.
Collapse
Affiliation(s)
- Vincent D Friedrich
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig, Germany
| | - Peter Pennitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Julia M Adler
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Dylan Postmus
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Liverpool School of Tropical Medicine, Department of Tropical Disease Biology, Liverpool, United Kingdom
| | - Kristina Müller
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany
| | - Luiz Gustavo Teixeira Alves
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Julia Prigann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Gladstone Institutes, San Francisco, USA
| | - Fabian Pott
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Thomas Hoefler
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Cengiz Goekeri
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany; Cyprus International University, Faculty of Medicine, Nicosia, Cyprus
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Humboldt-Universität zu Berlin, Institut fuer Biologie, Berlin, Germany
| | - Christine Goffinet
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Liverpool School of Tropical Medicine, Department of Tropical Disease Biology, Liverpool, United Kingdom
| | - Antoine-Emmanuel Saliba
- Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Markus Scholz
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany; University of Leipzig, Faculty of Mathematics and Computer Science, Leipzig, Germany
| | - Martin Witzenrath
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Jakob Trimpert
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Holger Kirsten
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany.
| | - Geraldine Nouailles
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany.
| |
Collapse
|
2
|
Maio N, Heffner AL, Rouault TA. Iron‑sulfur clusters in viral proteins: Exploring their elusive nature, roles and new avenues for targeting infections. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119723. [PMID: 38599324 PMCID: PMC11139609 DOI: 10.1016/j.bbamcr.2024.119723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron‑sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.
Collapse
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Audrey L Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Lê T, Buscemi L, Lepore M, Mishkovsky M, Hyacinthe JN, Hirt L. Influence of DNP Polarizing Agents on Biochemical Processes: TEMPOL in Transient Ischemic Stroke. ACS Chem Neurosci 2023; 14:3013-3018. [PMID: 37603041 PMCID: PMC10485885 DOI: 10.1021/acschemneuro.3c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Hyperpolarization of 13C by dissolution dynamic nuclear polarization (dDNP) boosts the sensitivity of magnetic resonance spectroscopy (MRS), making possible the monitoring in vivo and in real time of the biochemical reactions of exogenously infused 13C-labeled metabolic tracers. The preparation of a hyperpolarized substrate requires the use of free radicals as polarizing agents. Although added at very low doses, these radicals are not biologically inert. Here, we demonstrate that the presence of the nitroxyl radical TEMPOL influences significantly the cerebral metabolic readouts of a hyperpolarized [1-13C] lactate bolus injection in a mouse model of ischemic stroke with reperfusion. Thus, the choice of the polarizing agent in the design of dDNP hyperpolarized MRS experiments is of great importance and should be taken into account to prevent or to consider significant effects that could act as confounding factors.
Collapse
Affiliation(s)
- Thanh
Phong Lê
- Geneva
School of Health Sciences, HES-SO University
of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland
- Laboratory
of Functional and Metabolic Imaging, Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Lara Buscemi
- Department
of Clinical Neurosciences, Lausanne University
Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Mario Lepore
- CIBM
Center for Biomedical Imaging, École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Mor Mishkovsky
- Laboratory
of Functional and Metabolic Imaging, Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- Geneva
School of Health Sciences, HES-SO University
of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland
- Laboratory
of Functional and Metabolic Imaging, Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Station 6, 1015 Lausanne, Switzerland
- Image
Guided Intervention Laboratory, Faculty of Medicine, University of Geneva, HUG, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Lorenz Hirt
- Department
of Clinical Neurosciences, Lausanne University
Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
| |
Collapse
|
5
|
Maio N, Raza MK, Li Y, Zhang DL, Bollinger JM, Krebs C, Rouault TA. An iron-sulfur cluster in the zinc-binding domain of the SARS-CoV-2 helicase modulates its RNA-binding and -unwinding activities. Proc Natl Acad Sci U S A 2023; 120:e2303860120. [PMID: 37552760 PMCID: PMC10438387 DOI: 10.1073/pnas.2303860120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, uses an RNA-dependent RNA polymerase along with several accessory factors to replicate its genome and transcribe its genes. Nonstructural protein (nsp) 13 is a helicase required for viral replication. Here, we found that nsp13 ligates iron, in addition to zinc, when purified anoxically. Using inductively coupled plasma mass spectrometry, UV-visible absorption, EPR, and Mössbauer spectroscopies, we characterized nsp13 as an iron-sulfur (Fe-S) protein that ligates an Fe4S4 cluster in the treble-clef metal-binding site of its zinc-binding domain. The Fe-S cluster in nsp13 modulates both its binding to the template RNA and its unwinding activity. Exposure of the protein to the stable nitroxide TEMPOL oxidizes and degrades the cluster and drastically diminishes unwinding activity. Thus, optimal function of nsp13 depends on a labile Fe-S cluster that is potentially targetable for COVID-19 treatment.
Collapse
Affiliation(s)
- Nunziata Maio
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| | - Md Kausar Raza
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Yan Li
- National Institute of Neurological Disorders and Stroke, NIH, Proteomics Core Facility, Bethesda, MD20892
| | - De-Liang Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Tracey A. Rouault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD20892
| |
Collapse
|