1
|
Teng J, Liu T, Lu K, Hildebrandt A, Hao N. Semantic memory and associative ability as predictors of divergent thinking and visual artistic creativity: An expert-novice comparison. Conscious Cogn 2025; 133:103889. [PMID: 40412043 DOI: 10.1016/j.concog.2025.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/17/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Previous research highlights the importance of semantic memory and associative ability in divergent thinking, yet their roles in visual artistic creativity remain unclear. Using an expert-novice paradigm, this study investigated the predictive roles of semantic memory structure and associative ability in divergent thinking and visual artistic creativity. Design and non-design students completed a semantic distance judgment task, an association chain task, and four creative tasks. Key demographic and baseline variables were recorded to ensure group comparability. Results revealed significant group differences in semantic memory structure and associative ability. Notably, semantic network structure strongly predicted both divergent thinking and visual artistic creativity, with the non-design group showing particularly pronounced effects. Association fluency also predicted different types of creative performances across both groups. These findings extend the associative theory of creativity to visual arts, offering insights into the cognitive foundations of artistic creativity and its implications for art education.
Collapse
Affiliation(s)
- Jing Teng
- School of Psychology, Zhejiang Normal University, Jinhua, China, 321004; Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany; Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.
| | - Tuo Liu
- Institute of Psychology, Goethe University Frankfurt, Frankfurt am Main 60629, Germany.
| | - Kelong Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 230601, China.
| |
Collapse
|
2
|
Seiler JPH, Elpelt J, Ghobadi A, Kaschube M, Rumpel S. Perceptual and semantic maps in individual humans share structural features that predict creative abilities. COMMUNICATIONS PSYCHOLOGY 2025; 3:30. [PMID: 39994417 PMCID: PMC11850602 DOI: 10.1038/s44271-025-00214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Building perceptual and associative links between internal representations is a fundamental neural process, allowing individuals to structure their knowledge about the world and combine it to enable efficient and creative behavior. In this context, the representational similarity between pairs of represented entities is thought to reflect their associative linkage at different levels of sensory processing, ranging from lower-order perceptual levels up to higher-order semantic levels. While recently specific structural features of semantic representational maps were linked with creative abilities of individual humans, it remains unclear if these features are also shared on lower level, perceptual maps. Here, we address this question by presenting 148 human participants with psychophysical scaling tasks, using two sets of independent and qualitatively distinct stimuli, to probe representational map structures in the lower-order auditory and the higher-order semantic domain. We quantify individual representational features with graph-theoretical measures and demonstrate a robust correlation of representational structures in the perceptual auditory and semantic modality. We delineate these shared representational features to predict multiple verbal standard measures of creativity, observing that both, semantic and auditory features, reflect creative abilities. Our findings indicate that the general, modality-overarching representational geometry of an individual is a relevant underpinning of creative thought.
Collapse
Affiliation(s)
- Johannes P-H Seiler
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Jonas Elpelt
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
- Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Aida Ghobadi
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Kaschube
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
- Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Safron A, Juliani A, Reggente N, Klimaj V, Johnson M. On the varieties of conscious experiences: Altered Beliefs Under Psychedelics (ALBUS). Neurosci Conscious 2025; 2025:niae038. [PMID: 39949786 PMCID: PMC11823823 DOI: 10.1093/nc/niae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/09/2024] [Accepted: 02/06/2025] [Indexed: 02/16/2025] Open
Abstract
How is it that psychedelics so profoundly impact brain and mind? According to the model of "Relaxed Beliefs Under Psychedelics" (REBUS), 5-HT2a agonism is thought to help relax prior expectations, thus making room for new perspectives and patterns. Here, we introduce an alternative (but largely compatible) perspective, proposing that REBUS effects may primarily correspond to a particular (but potentially pivotal) regime of very high levels of 5-HT2a receptor agonism. Depending on both a variety of contextual factors and the specific neural systems being considered, we suggest opposite effects may also occur in which synchronous neural activity becomes more powerful, with accompanying "Strengthened Beliefs Under Psychedelics" (SEBUS) effects. Such SEBUS effects are consistent with the enhanced meaning-making observed in psychedelic therapy (e.g. psychological insight and the noetic quality of mystical experiences), with the imposition of prior expectations on perception (e.g. hallucinations and pareidolia), and with the delusional thinking that sometimes occurs during psychedelic experiences (e.g. apophenia, paranoia, engendering of inaccurate interpretations of events, and potentially false memories). With "Altered Beliefs Under Psychedelics" (ALBUS), we propose that the manifestation of SEBUS vs. REBUS effects may vary across the dose-response curve of 5-HT2a signaling. While we explore a diverse range of sometimes complex models, our basic idea is fundamentally simple: psychedelic experiences can be understood as kinds of waking dream states of varying degrees of lucidity, with similar underlying mechanisms. We further demonstrate the utility of ALBUS by providing neurophenomenological models of psychedelics focusing on mechanisms of conscious perceptual synthesis, dreaming, and episodic memory and mental simulation.
Collapse
Affiliation(s)
- Adam Safron
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Medford, MA 02155, United States
- Institute for Advanced Consciousness Studies, 2811 Wilshire Blvd #510, Santa Monica, CA 90403, United States
- Center for Psychedelic & Consciousness Research, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, United States
| | - Arthur Juliani
- Institute for Advanced Consciousness Studies, 2811 Wilshire Blvd #510, Santa Monica, CA 90403, United States
- Microsoft Research, Microsoft, 300 Lafayette St, New York, NY 10012, United States
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, 2811 Wilshire Blvd #510, Santa Monica, CA 90403, United States
| | - Victoria Klimaj
- Cognitive Science Program, Indiana University, 1001 E. 10th St, Bloomington, IN 47405, United States
- Department of Informatics, Indiana University, 700 N Woodlawn Ave, Bloomington, IN 47408, United States
| | - Matthew Johnson
- The Center of Excellence for Psilocybin Research and Treatment, Sheppard Pratt, 6501 N. Charles Street, Baltimore, MD 21204, United States
| |
Collapse
|
4
|
Camenzind M, Göbel N, Eberhard-Moscicka A, Knobel S, Hegi H, Single M, Kaufmann B, Schumacher R, Nyffeler T, Nef T, Müri R. The phenomenology of pareidolia in healthy subjects and patients with left- or right-hemispheric stroke. Heliyon 2024; 10:e27414. [PMID: 38468958 PMCID: PMC10926141 DOI: 10.1016/j.heliyon.2024.e27414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Pareidolia are perceptions of recognizable images or meaningful patterns where none exist. In recent years, this phenomenon has been increasingly studied in healthy subjects and patients with neurological or psychiatric diseases. The current study examined pareidolia production in a group of 53 stroke patients and 82 neurologically healthy controls who performed a natural images task. We found a significant reduction of absolute pareidolia production in left- and right-hemispheric stroke patients, with right-hemispheric patients producing overall fewest pareidolic output. Responses were categorized into 28 distinct categories, with 'Animal', 'Human', 'Face', and 'Body parts' being the most common, accounting for 72% of all pareidolia. Regarding the percentages of the different categories of pareidolia, we found a significant reduction for the percentage of "Body parts" pareidolia in the left-hemispheric patient group as compared to the control group, while the percentage of this pareidolia type was not significantly reduced in right-hemispheric patients compared to healthy controls. These results support the hypothesis that pareidolia production may be influenced by local-global visual processing with the left hemisphere being involved in local and detailed analytical visual processing to a greater extent. As such, a lesion to the right hemisphere, that is believed to be critical for global visual processing, might explain the overall fewest pareidolic output produced by the right-hemispheric patients.
Collapse
Affiliation(s)
- M. Camenzind
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - N. Göbel
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
- Research and Analysis Services, University Hospital Basel and University of Basel, Basel, Switzerland
| | - A.K. Eberhard-Moscicka
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department of Psychology, University of Bern, Bern, Switzerland
| | - S.E.J. Knobel
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - H. Hegi
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - M. Single
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - B.C. Kaufmann
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - R. Schumacher
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - T. Nyffeler
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - T. Nef
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - R.M. Müri
- Perception and Eye Movement Laboratory, Departments of Neurology and BioMedical Research, Inselspital, Bern University Hospital and University of Bern, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|