1
|
Li M, Guo Q, Wen J, Zhan F, Shi M, Zhou N, Huang C, Wang L, Mao H. Oriented bouncing of droplets with a small Weber number on inclined one-dimensional nanoforests. NANOSCALE 2024; 16:5343-5351. [PMID: 38375552 DOI: 10.1039/d3nr05449g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Asymmetric superhydrophobic structures with anisotropic wettability can achieve directional bouncing of droplets and thus can have applications in directional self-cleaning, liquid transportation, and heat transfer. To achieve convenient large-scale preparation of asymmetric superhydrophobic surfaces, inclined nanoforests are prepared in this work using a technique of competitive ablation polymerization, which allows the control of the inclined angles, diameters, and heights of the nanostructures. In this study, such asymmetric structures with the smallest dimension (230 nm diameter) known are achieved by a simple etching method to guide droplet unidirectional bouncing. With such nanoforests, the mechanism of droplet bouncing on their surface is investigated, and controllable droplet bouncing over a long distance is achieved using droplets with a low Weber number. The proposed structure has a promising future in directional self-cleaning, liquid transportation and heat transfer.
Collapse
Affiliation(s)
- Mao Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiming Guo
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Wen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Zhan
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Meng Shi
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Na Zhou
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Zhan D, Guo Z. Overview of the design of bionic fine hierarchical structures for fog collection. MATERIALS HORIZONS 2023; 10:4827-4856. [PMID: 37743773 DOI: 10.1039/d3mh01094e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Nature always uses its special wisdom to construct elegant and suitable schemes. Consequently, organisms in the flora and fauna are endowed with fine hierarchical structures (HS) to adapt to the harsh environment due to many years of evolution. Water is one of the most important resources; however, easy access to it is one the biggest challenges faced by human beings. In this case, fog collection (FC) is considered an efficient method to collect water, where bionic HS can be the bridge to efficiently facilitate the process of the FC. In this review, firstly, we discuss the basic principles of FC. Secondly, the role of HS in FC is analyzed in terms of the microstructure of typical examples of plants and animals. Simultaneously, the water-harvesting function of HS in a relatively new organism, fungal filament, is also presented. Thirdly, the HS design in each representative work is analyzed from a biomimetic perspective (single to multiple biomimetic approaches). The role of HS in FC, and then the FC performance of each work are analyzed in order of spatial dimension from a bionic perspective. Finally, the challenges at this stage and the outlook for the future are presented.
Collapse
Affiliation(s)
- Danyan Zhan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
3
|
Chu J, Tian G, Feng X. Recent advances in prevailing antifogging surfaces: structures, materials, durability, and beyond. NANOSCALE 2023. [PMID: 37368459 DOI: 10.1039/d3nr01767b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In past decades, antifogging surfaces have drawn more and more attention owing to their promising and wide applications such as in aerospace, traffic transportation, optical devices, the food industry, and medical and other fields. Therefore, the potential hazards caused by fogging need to be solved urgently. At present, the up-and-coming antifogging surfaces have been developing swiftly, and can effectively achieve antifogging effects primarily by preventing fog formation and rapid defogging. This review analyzes and summarizes current progress in antifogging surfaces. Firstly, some bionic and typical antifogging structures are described in detail. Then, the antifogging materials explored thus far, mainly focusing on substrates and coatings, are extensively introduced. After that, the solutions for improving the durability of antifogging surfaces are explicitly classified in four aspects. Finally, the remaining big challenges and future development trends of the ascendant antifogging surfaces are also presented.
Collapse
Affiliation(s)
- Jiahui Chu
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| | - Xiaoming Feng
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China.
| |
Collapse
|