1
|
Hong T. Mathematical Modeling for Oscillations Driven by Noncoding RNAs. Methods Mol Biol 2025; 2883:155-165. [PMID: 39702708 DOI: 10.1007/978-1-0716-4290-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In this chapter, we first survey strategies for the mathematical modeling of gene regulatory networks for capturing physiologically important dynamics in cells such as oscillations. We focus on models based on ordinary differential equations with various forms of nonlinear functions that describe gene regulations. We next use a small system of a microRNA and its mRNA target to illustrate a recently discovered oscillator driven by noncoding RNAs. This oscillator has unique features that distinguish it from conventional biological oscillators, including the absence of an imposed negative feedback loop and the divergence of the periods. The latter property may serve crucial biological functions for restoring heterogeneity of cell populations on the timescale of days. We describe general requirements for obtaining the limit cycle oscillations in terms of underlying biochemical reactions and kinetic rate constants. We discuss future directions stemming from this minimal, noncoding RNA-based model for gene expression oscillation.
Collapse
Affiliation(s)
- Tian Hong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Yap XL, Chen JA. Elucidation of how the Mir-23-27-24 cluster regulates development and aging. Exp Mol Med 2024; 56:1263-1271. [PMID: 38871817 PMCID: PMC11263685 DOI: 10.1038/s12276-024-01266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
MicroRNAs (miRNAs) are pivotal regulators of gene expression and are involved in biological processes spanning from early developmental stages to the intricate process of aging. Extensive research has underscored the fundamental role of miRNAs in orchestrating eukaryotic development, with disruptions in miRNA biogenesis resulting in early lethality. Moreover, perturbations in miRNA function have been implicated in the aging process, particularly in model organisms such as nematodes and flies. miRNAs tend to be clustered in vertebrate genomes, finely modulating an array of biological pathways through clustering within a single transcript. Although extensive research of their developmental roles has been conducted, the potential implications of miRNA clusters in regulating aging remain largely unclear. In this review, we use the Mir-23-27-24 cluster as a paradigm, shedding light on the nuanced physiological functions of miRNA clusters during embryonic development and exploring their potential involvement in the aging process. Moreover, we advocate further research into the intricate interplay among miRNA clusters, particularly the Mir-23-27-24 cluster, in shaping the regulatory landscape of aging.
Collapse
Affiliation(s)
- Xin Le Yap
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-An Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Hong T, Xing J. Data- and theory-driven approaches for understanding paths of epithelial-mesenchymal transition. Genesis 2024; 62:e23591. [PMID: 38553870 PMCID: PMC11017362 DOI: 10.1002/dvg.23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Reversible transitions between epithelial and mesenchymal cell states are a crucial form of epithelial plasticity for development and disease progression. Recent experimental data and mechanistic models showed multiple intermediate epithelial-mesenchymal transition (EMT) states as well as trajectories of EMT underpinned by complex gene regulatory networks. In this review, we summarize recent progress in quantifying EMT and characterizing EMT paths with computational methods and quantitative experiments including omics-level measurements. We provide perspectives on how these studies can help relating fundamental cell biology to physiological and pathological outcomes of EMT.
Collapse
Affiliation(s)
- Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville TN, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Rashid M, Devi BM, Banerjee M. Combinatorial Cooperativity in miR200-Zeb Feedback Network can Control Epithelial-Mesenchymal Transition. Bull Math Biol 2024; 86:48. [PMID: 38555331 DOI: 10.1007/s11538-024-01277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Carcinomas often utilize epithelial-mesenchymal transition (EMT) programs for cancer progression and metastasis. Numerous studies report SNAIL-induced miR200/Zeb feedback circuit as crucial in regulating EMT by placing cancer cells in at least three phenotypic states, viz. epithelial (E), hybrid (h-E/M), mesenchymal (M), along the E-M phenotypic spectrum. However, a coherent molecular-level understanding of how such a tiny circuit controls carcinoma cell entrance into and residence in various states is lacking. Here, we use molecular binding data and mathematical modeling to report that the miR200/Zeb circuit can essentially utilize combinatorial cooperativity to control E-M phenotypic plasticity. We identify minimal combinatorial cooperativities that give rise to E, h-E/M, and M phenotypes. We show that disrupting a specific number of miR200 binding sites on Zeb as well as Zeb binding sites on miR200 can have phenotypic consequences-the circuit can dynamically switch between two (E, M) and three (E, h-E/M, M) phenotypes. Further, we report that in both SNAIL-induced and SNAIL knock-out miR200/Zeb circuits, cooperative transcriptional feedback on Zeb as well as Zeb translation inhibition due to miR200 are essential for the occurrence of intermediate h-E/M phenotype. Finally, we demonstrate that SNAIL can be dispensable for EMT, and in the absence of SNAIL, the transcriptional feedback can control cell state transition from E to h-E/M, to M state. Our results thus highlight molecular-level regulation of EMT in miR200/Zeb circuit and we expect these findings to be crucial to future efforts aiming to prevent EMT-facilitated dissemination of carcinomas.
Collapse
Affiliation(s)
- Mubasher Rashid
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Brasanna M Devi
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Malay Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
6
|
Bocci F, Jia D, Nie Q, Jolly MK, Onuchic J. Theoretical and computational tools to model multistable gene regulatory networks. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:10.1088/1361-6633/acec88. [PMID: 37531952 PMCID: PMC10521208 DOI: 10.1088/1361-6633/acec88] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.
Collapse
Affiliation(s)
- Federico Bocci
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - José Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
7
|
Groves SM, Panchy N, Tyson DR, Harris LA, Quaranta V, Hong T. Involvement of Epithelial-Mesenchymal Transition Genes in Small Cell Lung Cancer Phenotypic Plasticity. Cancers (Basel) 2023; 15:1477. [PMID: 36900269 PMCID: PMC10001072 DOI: 10.3390/cancers15051477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive cancer recalcitrant to treatment, arising predominantly from epithelial pulmonary neuroendocrine (NE) cells. Intratumor heterogeneity plays critical roles in SCLC disease progression, metastasis, and treatment resistance. At least five transcriptional SCLC NE and non-NE cell subtypes were recently defined by gene expression signatures. Transition from NE to non-NE cell states and cooperation between subtypes within a tumor likely contribute to SCLC progression by mechanisms of adaptation to perturbations. Therefore, gene regulatory programs distinguishing SCLC subtypes or promoting transitions are of great interest. Here, we systematically analyze the relationship between SCLC NE/non-NE transition and epithelial to mesenchymal transition (EMT)-a well-studied cellular process contributing to cancer invasiveness and resistance-using multiple transcriptome datasets from SCLC mouse tumor models, human cancer cell lines, and tumor samples. The NE SCLC-A2 subtype maps to the epithelial state. In contrast, SCLC-A and SCLC-N (NE) map to a partial mesenchymal state (M1) that is distinct from the non-NE, partial mesenchymal state (M2). The correspondence between SCLC subtypes and the EMT program paves the way for further work to understand gene regulatory mechanisms of SCLC tumor plasticity with applicability to other cancer types.
Collapse
Affiliation(s)
- Sarah M. Groves
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Nicholas Panchy
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Darren R. Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Leonard A. Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
- Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Tian Hong
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA
- National Institute for Mathematical and Biological Synthesis, Knoxville, TN 37996, USA
| |
Collapse
|