1
|
Dooley JC, van der Heijden ME. More Than a Small Brain: The Importance of Studying Neural Function during Development. J Neurosci 2024; 44:e1367242024. [PMID: 39603806 PMCID: PMC11604142 DOI: 10.1523/jneurosci.1367-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
The nervous system contains complex circuits comprising thousands of cell types and trillions of connections. Here, we discuss how the field of "developmental systems neuroscience" combines the molecular and genetic perspectives of developmental neuroscience with the (typically adult-focused) functional perspective of systems neuroscience. This combination of approaches is critical to understanding how a handful of cells eventually produce the wide range of behaviors necessary for survival. Functional circuit development typically lags behind neural connectivity, leading to intermediate stages of neural activity that are either not seen in adults or, if present, are considered pathophysiological. Developmental systems neuroscience examines these intermediate stages of neural activity, mapping out the critical phases and inflection points of neural circuit function to understand how neural activity and behavior emerge across development. Beyond understanding typical development, this approach provides invaluable insight into the pathophysiology of neurodevelopmental disorders by identifying when and how functional development diverges between health and disease. We argue that developmental systems neuroscience will identify important periods of neural development, reveal novel therapeutic windows for treatment, and set the stage to answer fundamental questions about the brain in health and disease.
Collapse
Affiliation(s)
- James C Dooley
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
| | - Meike E van der Heijden
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Center for Neurobiology Research, Roanoke, Virginia 24016
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24016
| |
Collapse
|
2
|
van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. eLife 2024; 12:RP91483. [PMID: 39072369 DOI: 10.7554/elife.91483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Dominic J Kizek
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
3
|
van der Heijden ME, Rey Hipolito AG, Kim LH, Kizek DJ, Perez RM, Lin T, Sillitoe RV. Glutamatergic cerebellar neurons differentially contribute to the acquisition of motor and social behaviors. Nat Commun 2023; 14:2771. [PMID: 37188723 PMCID: PMC10185563 DOI: 10.1038/s41467-023-38475-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Insults to the developing cerebellum can cause motor, language, and social deficits. Here, we investigate whether developmental insults to different cerebellar neurons constrain the ability to acquire cerebellar-dependent behaviors. We perturb cerebellar cortical or nuclei neuron function by eliminating glutamatergic neurotransmission during development, and then we measure motor and social behaviors in early postnatal and adult mice. Altering cortical and nuclei neurons impacts postnatal motor control and social vocalizations. Normalizing neurotransmission in cortical neurons but not nuclei neurons restores social behaviors while the motor deficits remain impaired in adults. In contrast, manipulating only a subset of nuclei neurons leaves social behaviors intact but leads to early motor deficits that are restored by adulthood. Our data uncover that glutamatergic neurotransmission from cerebellar cortical and nuclei neurons differentially control the acquisition of motor and social behaviors, and that the brain can compensate for some but not all perturbations to the developing cerebellum.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Alejandro G Rey Hipolito
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Linda H Kim
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Dominic J Kizek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Ross M Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Tao Lin
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Zhou J, Van der Heijden ME, Salazar Leon LE, Lin T, Miterko LN, Kizek DJ, Perez RM, Pavešković M, Brown AM, Sillitoe RV. Propranolol Modulates Cerebellar Circuit Activity and Reduces Tremor. Cells 2022; 11:cells11233889. [PMID: 36497147 PMCID: PMC9740691 DOI: 10.3390/cells11233889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a β-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through β1 and β2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in β1 and β2 null mice or Car8wdl/wdl mice lacking β1 and β2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through β-adrenergic receptors and may contribute to tremor therapeutics.
Collapse
Affiliation(s)
- Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meike E. Van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Luis E. Salazar Leon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N. Miterko
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominic J. Kizek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Ross M. Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matea Pavešković
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8913
| |
Collapse
|