1
|
Manchel A, Gee M, Vadigepalli R. From sampling to simulating: Single-cell multiomics in systems pathophysiological modeling. iScience 2024; 27:111322. [PMID: 39628578 PMCID: PMC11612781 DOI: 10.1016/j.isci.2024.111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As single-cell omics data sampling and acquisition methods have accumulated at an unprecedented rate, various data analysis pipelines have been developed for the inference of cell types, cell states and their distribution, state transitions, state trajectories, and state interactions. This presents a new opportunity in which single-cell omics data can be utilized to generate high-resolution, high-fidelity computational models. In this review, we discuss how single-cell omics data can be used to build computational models to simulate biological systems at various scales. We propose that single-cell data can be integrated with physiological information to generate organ-specific models, which can then be assembled to generate multi-organ systems pathophysiological models. Finally, we discuss how generic multi-organ models can be brought to the patient-specific level thus permitting their use in the clinical setting.
Collapse
Affiliation(s)
- Alexandra Manchel
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michelle Gee
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Dubois V, Lefebvre P, Staels B, Eeckhoute J. Nuclear receptors: pathophysiological mechanisms and drug targets in liver disease. Gut 2024; 73:1562-1569. [PMID: 38862216 DOI: 10.1136/gutjnl-2023-331741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors required for liver development and function. As a consequence, NRs have emerged as attractive drug targets in a wide range of liver diseases. However, liver dysfunction and failure are linked to loss of hepatocyte identity characterised by deficient NR expression and activities. This might at least partly explain why several pharmacological NR modulators have proven insufficiently efficient to improve liver functionality in advanced stages of diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this perspective, we review the most recent advances in the hepatic NR field and discuss the contribution of multiomic approaches to our understanding of their role in the molecular organisation of an intricated transcriptional regulatory network, as well as in liver intercellular dialogues and interorgan cross-talks. We discuss the potential benefit of novel therapeutic approaches simultaneously targeting multiple NRs, which would not only reactivate the hepatic NR network and restore hepatocyte identity but also impact intercellular and interorgan interplays whose importance to control liver functions is further defined. Finally, we highlight the need of considering individual parameters such as sex and disease stage in the development of NR-based clinical strategies.
Collapse
Affiliation(s)
- Vanessa Dubois
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical Sciences, Ghent University, Gent, Belgium
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Jerome Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
3
|
Simsek C. The evolution and revolution of artificial intelligence in hepatology: From current applications to future paradigms. HEPATOLOGY FORUM 2024; 5:97-99. [PMID: 39006141 PMCID: PMC11237248 DOI: 10.14744/hf.2024.2024.ed0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Affiliation(s)
- Cem Simsek
- Department of Gastroenterology, Hacettepe University School of Medicine, Ankara, Turkiye
| |
Collapse
|
4
|
Albadry M, Küttner J, Grzegorzewski J, Dirsch O, Kindler E, Klopfleisch R, Liska V, Moulisova V, Nickel S, Palek R, Rosendorf J, Saalfeld S, Settmacher U, Tautenhahn HM, König M, Dahmen U. Cross-species variability in lobular geometry and cytochrome P450 hepatic zonation: insights into CYP1A2, CYP2D6, CYP2E1 and CYP3A4. Front Pharmacol 2024; 15:1404938. [PMID: 38818378 PMCID: PMC11137285 DOI: 10.3389/fphar.2024.1404938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
There is a lack of systematic research exploring cross-species variation in liver lobular geometry and zonation patterns of critical drug-metabolizing enzymes, a knowledge gap essential for translational studies. This study investigated the critical interplay between lobular geometry and key cytochrome P450 (CYP) zonation in four species: mouse, rat, pig, and human. We developed an automated pipeline based on whole slide images (WSI) of hematoxylin-eosin-stained liver sections and immunohistochemistry. This pipeline allows accurate quantification of both lobular geometry and zonation patterns of essential CYP proteins. Our analysis of CYP zonal expression shows that all CYP enzymes (besides CYP2D6 with panlobular expression) were observed in the pericentral region in all species, but with distinct differences. Comparison of normalized gradient intensity shows a high similarity between mice and humans, followed by rats. Specifically, CYP1A2 was expressed throughout the pericentral region in mice and humans, whereas it was restricted to a narrow pericentral rim in rats and showed a panlobular pattern in pigs. Similarly, CYP3A4 is present in the pericentral region, but its extent varies considerably in rats and appears panlobular in pigs. CYP2D6 zonal expression consistently shows a panlobular pattern in all species, although the intensity varies. CYP2E1 zonal expression covered the entire pericentral region with extension into the midzone in all four species, suggesting its potential for further cross-species analysis. Analysis of lobular geometry revealed an increase in lobular size with increasing species size, whereas lobular compactness was similar. Based on our results, zonated CYP expression in mice is most similar to humans. Therefore, mice appear to be the most appropriate species for drug metabolism studies unless larger species are required for other purposes, e.g., surgical reasons. CYP selection should be based on species, with CYP2E1 and CYP2D6 being the most preferable to compare four species. CYP1A2 could be considered as an additional CYP for rodent versus human comparisons, and CYP3A4 for mouse/human comparisons. In conclusion, our image analysis pipeline together with suggestions for species and CYP selection can serve to improve future cross-species and translational drug metabolism studies.
Collapse
Affiliation(s)
- Mohamed Albadry
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Jonas Küttner
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
- Institute for Theoretical Biology, Institute für Biologie, Systems Medicine of the Liver, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Grzegorzewski
- Institute for Theoretical Biology, Institute für Biologie, Systems Medicine of the Liver, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olaf Dirsch
- Institute for Pathology, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany
| | - Eva Kindler
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Vladimira Moulisova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Sandra Nickel
- Clinic and Polyclinic for Visceral, Transplantation, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Richard Palek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jachym Rosendorf
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Sylvia Saalfeld
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
- Clinic and Polyclinic for Visceral, Transplantation, Thoracic and Vascular Surgery, Leipzig University Hospital, Leipzig, Germany
| | - Matthias König
- Institute for Theoretical Biology, Institute für Biologie, Systems Medicine of the Liver, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
5
|
Lambers L, Waschinsky N, Schleicher J, König M, Tautenhahn HM, Albadry M, Dahmen U, Ricken T. Quantifying fat zonation in liver lobules: an integrated multiscale in silico model combining disturbed microperfusion and fat metabolism via a continuum biomechanical bi-scale, tri-phasic approach. Biomech Model Mechanobiol 2024; 23:631-653. [PMID: 38402347 DOI: 10.1007/s10237-023-01797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 02/26/2024]
Abstract
Metabolic zonation refers to the spatial separation of metabolic functions along the sinusoidal axes of the liver. This phenomenon forms the foundation for adjusting hepatic metabolism to physiological requirements in health and disease (e.g., metabolic dysfunction-associated steatotic liver disease/MASLD). Zonated metabolic functions are influenced by zonal morphological abnormalities in the liver, such as periportal fibrosis and pericentral steatosis. We aim to analyze the interplay between microperfusion, oxygen gradient, fat metabolism and resulting zonated fat accumulation in a liver lobule. Therefore we developed a continuum biomechanical, tri-phasic, bi-scale, and multicomponent in silico model, which allows to numerically simulate coupled perfusion-function-growth interactions two-dimensionally in liver lobules. The developed homogenized model has the following specifications: (i) thermodynamically consistent, (ii) tri-phase model (tissue, fat, blood), (iii) penta-substances (glycogen, glucose, lactate, FFA, and oxygen), and (iv) bi-scale approach (lobule, cell). Our presented in silico model accounts for the mutual coupling between spatial and time-dependent liver perfusion, metabolic pathways and fat accumulation. The model thus allows the prediction of fat development in the liver lobule, depending on perfusion, oxygen and plasma concentration of free fatty acids (FFA), oxidative processes, the synthesis and the secretion of triglycerides (TGs). The use of a bi-scale approach allows in addition to focus on scale bridging processes. Thus, we will investigate how changes at the cellular scale affect perfusion at the lobular scale and vice versa. This allows to predict the zonation of fat distribution (periportal or pericentral) depending on initial conditions, as well as external and internal boundary value conditions.
Collapse
Affiliation(s)
- Lena Lambers
- Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, Stuttgart, 70191, Germany
| | - Navina Waschinsky
- Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, Stuttgart, 70191, Germany
| | - Jana Schleicher
- Friedrich-Schiller-Universität Jena, Fürstengraben 27, Jena, 07743, Germany
| | - Matthias König
- Systems Medicine of Liver, Institute for Theoretical Biology, Institute for Biology, Humboldt-University Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 20, Leipzig, 04103, Germany
| | - Mohamed Albadry
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Straße 1, Jena, 07747, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Straße 1, Jena, 07747, Germany
| | - Tim Ricken
- Institute of Structural Mechanics and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Pfaffenwaldring 27, Stuttgart, 70191, Germany.
| |
Collapse
|
6
|
Zhao J, Ghallab A, Hassan R, Dooley S, Hengstler JG, Drasdo D. A liver digital twin for in silico testing of cellular and inter-cellular mechanisms in regeneration after drug-induced damage. iScience 2024; 27:108077. [PMID: 38371522 PMCID: PMC10869925 DOI: 10.1016/j.isci.2023.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/22/2023] [Accepted: 09/25/2023] [Indexed: 02/20/2024] Open
Abstract
This communication presents a mathematical mechanism-based model of the regenerating liver after drug-induced pericentral lobule damage resolving tissue microarchitecture. The consequence of alternative hypotheses about the interplay of different cell types on regeneration was simulated. Regeneration dynamics has been quantified by the size of the damage-induced dead cell area, the hepatocyte density and the spatial-temporal profile of the different cell types. We use deviations of observed trajectories from the simulated system to identify branching points, at which the systems behavior cannot be explained by the underlying set of hypotheses anymore. Our procedure reflects a successful strategy for generating a fully digital liver twin that, among others, permits to test perturbations from the molecular up to the tissue scale. The model simulations are complementing current knowledge on liver regeneration by identifying gaps in mechanistic relationships and guiding the system toward the most informative (lacking) parameters that can be experimentally addressed.
Collapse
Affiliation(s)
- Jieling Zhao
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Group SIMBIOTX, INRIA Saclay, 91120 Palaiseau, France
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Jan Georg Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Dirk Drasdo
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
- Group SIMBIOTX, INRIA Saclay, 91120 Palaiseau, France
| |
Collapse
|
7
|
Martínez-Torres D, Maldonado V, Pérez-Gallardo C, Yañez R, Candia V, Kalaidzidis Y, Zerial M, Morales-Navarrete H, Segovia-Miranda F. Phenotypic characterization of liver tissue heterogeneity through a next-generation 3D single-cell atlas. Sci Rep 2024; 14:2823. [PMID: 38307948 PMCID: PMC10837128 DOI: 10.1038/s41598-024-53309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Three-dimensional (3D) geometrical models are potent tools for quantifying complex tissue features and exploring structure-function relationships. However, these models are generally incomplete due to experimental limitations in acquiring multiple (> 4) fluorescent channels in thick tissue sections simultaneously. Indeed, predictive geometrical and functional models of the liver have been restricted to few tissue and cellular components, excluding important cellular populations such as hepatic stellate cells (HSCs) and Kupffer cells (KCs). Here, we combined deep-tissue immunostaining, multiphoton microscopy, deep-learning techniques, and 3D image processing to computationally expand the number of simultaneously reconstructed tissue structures. We then generated a spatial single-cell atlas of hepatic architecture (Hep3D), including all main tissue and cellular components at different stages of post-natal development in mice. We used Hep3D to quantitatively study 1) hepatic morphodynamics from early post-natal development to adulthood, and 2) the effect on the liver's overall structure when changing the hepatic environment after removing KCs. In addition to a complete description of bile canaliculi and sinusoidal network remodeling, our analysis uncovered unexpected spatiotemporal patterns of non-parenchymal cells and hepatocytes differing in size, number of nuclei, and DNA content. Surprisingly, we found that the specific depletion of KCs results in morphological changes in hepatocytes and HSCs. These findings reveal novel characteristics of liver heterogeneity and have important implications for both the structural organization of liver tissue and its function. Our next-gen 3D single-cell atlas is a powerful tool to understand liver tissue architecture, opening up avenues for in-depth investigations into tissue structure across both normal and pathological conditions.
Collapse
Affiliation(s)
- Dilan Martínez-Torres
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Valentina Maldonado
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Cristian Pérez-Gallardo
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Yañez
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Valeria Candia
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hernán Morales-Navarrete
- Department of Systems Biology of Development, University of Konstanz, Konstanz, Germany.
- Facultad de Ciencias Técnicas, Universidad Internacional Del Ecuador UIDE, Quito, Ecuador.
| | - Fabián Segovia-Miranda
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
- Grupo de Procesos en Biología del Desarrollo (GDeP), Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
8
|
Drasdo D, Zhao J. An integrative experimental and computational twin modeling approach to understand the clonal dynamics in normal liver. J Hepatol 2023:S0168-8278(23)00345-8. [PMID: 37277076 DOI: 10.1016/j.jhep.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Affiliation(s)
- Dirk Drasdo
- Institut National de Recherche en Informatique et en Automatique (INRIA), Palaiseau, 91120, France; Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany.
| | - Jieling Zhao
- Institut National de Recherche en Informatique et en Automatique (INRIA), Palaiseau, 91120, France; Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139 Dortmund, Germany
| |
Collapse
|
9
|
Currie GM. The emerging role of artificial intelligence and digital twins in pre-clinical molecular imaging. Nucl Med Biol 2023; 120-121:108337. [PMID: 37030076 DOI: 10.1016/j.nucmedbio.2023.108337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
INTRODUCTION Pre-clinical molecular imaging, particularly with mice, is an essential part of drug and radiopharmaceutical development. There remain ethical challenges to reduce, refine and replace animal imaging where possible. METHOD A number of approaches have been adopted to reduce the use of mice including using algorithmic approaches to animal modelling. Digital twins have been used to create a virtual model of mice, however, exploring the potential of deep learning approaches to digital twin development may enhance capabilities and application in research. RESULTS Generative adversarial networks produce generated images that sufficiently resemble reality that they could be adapted to create digital twins. Specific genetic mouse models have greater homogeneity making them more receptive to modelling and suitable specifically for digital twin simulation. CONCLUSION There are numerous benefits of digital twins in pre-clinical imaging including improved outcomes, fewer animal studies, shorter development timelines and lower costs.
Collapse
|