1
|
Lin W, Zhang X, Liu Z, Huo H, Chang Y, Zhao J, Gong S, Zhao G, Huo J. Isoform-resolution single-cell RNA sequencing reveals the transcriptional panorama of adult Baoshan pig testis cells. BMC Genomics 2025; 26:459. [PMID: 40340725 PMCID: PMC12063418 DOI: 10.1186/s12864-025-11636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND As the primary organ of the male reproductive system, the testis facilitates spermatogenesis and androgen secretion. Due to the complexity of spermatogenesis, elucidating cellular heterogeneity and gene expression dynamics within the porcine testis is critical for advancing reproductive biology. Nevertheless, the cellular composition and regulatory mechanisms of porcine testes remain insufficiently characterized. In this study, we applied integrated long-read (Nanopore) and short-read (Illumina) scRNA-seq to Baoshan pig testes, establishing a comprehensive transcriptional profile to delineate cellular heterogeneity and molecular regulation. RESULTS Through systematic analysis of testicular architecture and the temporal progression of spermatogenesis, we characterized 11,520 single cells and 23,402 genes, delineating germ cell developmental stages: proliferative-phase spermatogonia (SPG), early-stage spermatocytes (Early SPC) and late-stage spermatocytes (Late SPC) during meiosis, and spermiogenic-phase round spermatids (RS) followed by elongating/elongated spermatids (ES), culminating in mature spermatozoa (Sperm). We further identified nine distinct testicular cell types, with germ cells spanning all developmental stages and somatic components comprising Sertoli cells, macrophages, and peritubular myoid cells as microenvironmental constituents, revealing the cellular heterogeneity of testicular tissue and dynamic characteristics of spermatogenesis. We obtained the dynamic expression changes of 16 vital marker genes during spermatogenesis and performed immunofluorescence validation on 7 marker genes. Gene ontology analysis revealed that germ cells at various stages were involved in specific biological processes, while cell communication networks highlighted eight pivotal signaling pathways, including MIF, NRG, WNT, VEGF, BMP, CCL, PARs, and ENHO pathways. Long-read sequencing further captured the full integrity and diversity of RNA transcripts, identifying 60% of the novel annotated isoforms and revealing that FSM isoforms exhibited longer transcript lengths, longer coding sequences, longer open reading frames, and a great number of exons, suggesting the complexity of isoforms within the testicular microenvironment. CONCLUSIONS Our results provide insight into the cellular heterogeneity, intercellular communication, and gene expression/transcript diversity in porcine testes, and offer a valuable resource for understanding the molecular mechanisms of porcine spermatogenesis.
Collapse
Affiliation(s)
- Wan Lin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xia Zhang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, 033001, Shanxi, China
| | - Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hailong Huo
- Yunnan Open University, Kunming, 650500, Yunnan, China
| | - Yongcheng Chang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiading Zhao
- Baoshan Pig Research Institute, Baoshan, 678200, Yunnan, China
| | - Shaorong Gong
- Baoshan Pig Research Institute, Baoshan, 678200, Yunnan, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Zhang M, Yan Y, Peng G, Gao S, Li H, Li Y. Single-Cell RNA Sequencing Reveals an Atlas of Meihua Pig Testis Cells. Animals (Basel) 2025; 15:752. [PMID: 40076035 PMCID: PMC11899385 DOI: 10.3390/ani15050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Mammalian spermatogenesis is a complex biological process that is regulated by multiple types of cells. The heterogeneity of these cells poses a challenge for analyzing different cell types at different developmental stages. To characterize the transcriptomic landscape of porcine spermatogenesis and identify potential marker genes for spermatogonia, an unbiased transcriptomic study of spermatogenesis in neonatal and sexually mature six-month-old Meihua pigs was performed using 10× Genomics single-cell RNA sequencing (scRNA-seq). Through the collection of scRNA-seq data from 13,839 cells from Meihua pig testes, three germ cells (spermatogonia, spermatocytes and spermatids) and eight somatic cells (Sertoli cells, Leydig cells, myoid/stromal cells, endothelial cells, T cells/macrophages and erythroblasts) were identified. Pseudo-timing analysis showed that myoid cells and stromal cells originated from common progenitors in Meihua pigs. Functional enrichment analysis revealed that the differentially expressed genes (DEGs) in testicular somatic cells were enriched in the pathways of Ribosome, Oxidative phosphorylation, Protein processing in endoplasmic reticulum, Retrograde endocannabinoid signaling, Cellular senescence and Insulin signaling. Meanwhile, in the three different germ cells, except for pathways which were the same as the first three pathways for somatic cells, DEGs were also enriched in the Spliceosome, Cell cycle, Autophagy and Mitophagy pathways. Furthermore, the candidate marker gene TKTL1 in spermatogonia was identified using immunohistochemistry and immunofluorescence. In conclusion, we collected transcription datasets and constructed single-cell developmental maps of germ cells and somatic cells during the testicular development of Meihua pigs, which provided new insights into the spermatogenesis of Meihua pigs and the development of various types of cells in their testes.
Collapse
Affiliation(s)
| | | | | | | | - Hongyi Li
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (M.Z.); (Y.Y.); (G.P.); (S.G.)
| | - Yuan Li
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (M.Z.); (Y.Y.); (G.P.); (S.G.)
| |
Collapse
|
3
|
Wang Z, Xiao N, Han Q, Qi Y, Shi D, Luo C. A Review and New Insights Into Spermatogenesis From Single-Cell RNA Sequencing. Reprod Domest Anim 2025; 60:e70019. [PMID: 39985199 DOI: 10.1111/rda.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/30/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
As the most primitive germ cells in the testis, spermatogonial stem cells (SSCs) not only constantly renew themselves to ensure their quantity, but also differentiate into mature sperm cells to complete spermatogenesis and transmit genetic information to the next generation. Successful spermatogenesis is inseparable from niche regulation, which provides factors that enhance the self-renewal of SSCs to maintain their numbers and directs the appropriate differentiation of spermatogonia. Some progress has been achieved in the definition and isolation of SSCs. However, a high degree of cellular heterogeneity is found in the testis, revealing a combination of various cell types at different developmental stages and a lack of specific molecular markers (especially in domestic animals) for fully screening and purifying SSCs. These factors have considerably hindered further research into the mechanisms of maintenance, self-renewal, and differentiation of SSCs, as well as limited their isolation, purification, and applications. Accumulated studies have recently successfully employed single-cell RNA sequencing (scRNA-seq) as a novel approach to detailing the classification of cell subsets, mining specifically expressed genes in different cell types, and accurate identification of specific cell types. This review summarises the progress of SSCs identification and offers new insights into the SSCs developmental trajectory from single-cell RNA sequencing.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Technical Support, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Nan Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qing Han
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yunjia Qi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chan Luo
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
de Carvalho FE, Ferraz JBS, Pedrosa VB, Matos EC, Eler JP, Silva MR, Guimarães JD, Bussiman F, Silva BCA, Mulim HA, Rocha AO, Araujo AC, Wen H, Campos GS, Brito LF. Genetic parameters and genome-wide association studies including the X chromosome for various reproduction and semen quality traits in Nellore cattle. BMC Genomics 2025; 26:26. [PMID: 39794685 PMCID: PMC11720523 DOI: 10.1186/s12864-024-11193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The profitability of the beef industry is directly influenced by the fertility rate and reproductive performance of both males and females, which can be improved through selective breeding. When performing genomic analyses, genetic markers located on the X chromosome have been commonly ignored despite the X chromosome being one of the largest chromosomes in the cattle genome. Therefore, the primary objectives of this study were to: (1) estimate variance components and genetic parameters for eighteen male and five female fertility and reproductive traits in Nellore cattle including X chromosome markers in the analyses; and (2) perform genome-wide association studies and functional genomic analyses to better understand the genetic background of male and female fertility and reproductive performance traits in Nellore cattle. RESULTS The percentage of the total direct heritability (h2total) explained by the X chromosome markers (h2x) ranged from 3 to 32% (average: 16.4%) and from 9 to 67% (average: 25.61%) for female reproductive performance and male fertility traits, respectively. Among the traits related to breeding soundness evaluation, the overall bull and semen evaluation and semen quality traits accounted for the highest proportion of h2x relative to h2total with an average of 39.5% and 38.75%, respectively. The total number of significant genomic markers per trait ranged from 7 (seminal vesicle width) to 43 (total major defects). The number of significant markers located on the X chromosome ranged from zero to five. A total of 683, 252, 694, 382, 61, and 77 genes overlapped with the genomic regions identified for traits related to female reproductive performance, semen quality, semen morphology, semen defects, overall bulls' fertility evaluation, and overall semen evaluation traits, respectively. The key candidate genes located on the X chromosome are PRR32, STK26, TMSB4X, TLR7, PRPS2, SMS, SMARCA1, UTP14A, and BCORL1. The main gene ontology terms identified are "Oocyte Meiosis", "Progesterone Mediated Oocyte Maturation", "Thermogenesis", "Sperm Flagellum", and "Innate Immune Response". CONCLUSIONS Our findings indicate the key role of genes located on the X chromosome on the phenotypic variability of male and female reproduction and fertility traits in Nellore cattle. Breeding programs aiming to improve these traits should consider adding the information from X chromosome markers in their genomic analyses.
Collapse
Affiliation(s)
- Felipe E de Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil.
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| | - José Bento S Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Elisangela C Matos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Joanir P Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Marcio R Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - José D Guimarães
- Department of Veterinary Medicine, Federal University of Vicosa, Vicosa, MG, Brazil
| | - Fernando Bussiman
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Barbara C A Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Artur Oliveira Rocha
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Hui Wen
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Gabriel S Campos
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Yan Z, Yang Q, Wang P, Gun S. Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig. Curr Issues Mol Biol 2024; 47:10. [PMID: 39852125 PMCID: PMC11763623 DOI: 10.3390/cimb47010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity. In this research, we performed 10× Genomics scRNA-seq to conduct an unbiased single-cell transcriptomic analysis in Hezuo pig (HZP) testis at one month of age during prepuberty. We collected 14,276 cells and identified 8 cell types (including 2 germ cells types and 6 somatic cell types). Pseudo-timing analysis demonstrated that Leydig cells (LCs) and myoid cells (MCs) originated from a shared progenitor cell lineage. Moreover, the functional enrichment analyses showed that the genes of differential expression were enriched in spermatogonia (SPG) and were enriched in the cell cycle, reproduction, and spermatogenesis. Expressed genes in spermatocytes (SPCs) were enriched in the cAMP, cell cycle, male gamete generation, reproductive system development, and sexual reproduction, while growth hormone synthesis, gamete generation, reproductive process, and spermine synthase activity were enriched in Sertoli cells (SCs). Additionally, chemokine, B cell receptor, activation of immune response, and enzyme binding were enriched in macrophages. Our study investigated transcriptional alterations across different cell types during spermatogenesis, yielding new understandings of spermatogenic processes and cell development. This research delivers an exploration of spermatogenesis and testicular cell biology in HZP, establishing the groundwork for upcoming breeding initiatives.
Collapse
Affiliation(s)
| | | | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (Q.Y.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (Q.Y.)
| |
Collapse
|
6
|
Shen Y, An Z, Xia S, Ding Q, Chen K, Miao Y, Wang T, Zhong J, Li J, Wang X, Wang H. A multi-omics database of buffaloes from Yangtze valley reveals diversity of water buffalo (Bubalus bubalis). Sci Data 2024; 11:1375. [PMID: 39695240 DOI: 10.1038/s41597-024-04246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Asian water buffalo (Bubalus bubalis) is the fundamental livestock resource for local rural populations and holds a promising prospect of their milk and meat. Xuyi mountain (XYM) and Haizi (HZ) buffaloes from Yangtze valley comprises of species diversity of Asian water buffaloes. Current multi-omics enables identification of causal genes and elucidation of genetic regulatory mechanisms underlying complex traits in buffaloes. Here, we conducted the integrated analysis of metabolome and metagenome of rumen fluid, transcriptome and metabolome of blood, and whole genome sequence data from XYM (n = 7) and HZ (n = 10) male buffaloes. Our results revealed the apparent diversity of multi-layer omics profiles between two buffalo species. The built-up multi-omics database supports the discoveries of diversity in Asian water buffalo and potentially serves valuable resources for studying causal regulatory variants and their mechanisms.
Collapse
Affiliation(s)
- Yangyang Shen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing, 210014, China
| | - Zhenjiang An
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing, 210014, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuwen Xia
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing, 210014, China
| | - Qiang Ding
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing, 210014, China
| | - Kunlin Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing, 210014, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Wang
- Guangdong GemPharmatech Co., Ltd., Foshan, 528000, China
| | - Jifeng Zhong
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing, 210014, China
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Shandong OX Livestock Breeding Co., Ltd., Jinan, 250100, China.
| | - Huili Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing, 210014, China.
| |
Collapse
|
7
|
Lu Y, Li M, Gao Z, Ma H, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Innovative Insights into Single-Cell Technologies and Multi-Omics Integration in Livestock and Poultry. Int J Mol Sci 2024; 25:12940. [PMID: 39684651 DOI: 10.3390/ijms252312940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, single-cell RNA sequencing (scRNA-seq) has marked significant strides in livestock and poultry research, especially when integrated with multi-omics approaches. These advancements provide a nuanced view into complex regulatory networks and cellular dynamics. This review outlines the application of scRNA-seq in key species, including poultry, swine, and ruminants, with a focus on outcomes related to cellular heterogeneity, developmental biology, and reproductive mechanisms. We emphasize the synergistic power of combining scRNA-seq with epigenomic, proteomic, and spatial transcriptomic data, enhancing molecular breeding precision, optimizing health management strategies, and refining production traits in livestock and poultry. The integration of these technologies offers a multidimensional approach that not only broadens the scope of data analysis but also provides actionable insights for improving animal health and productivity.
Collapse
Affiliation(s)
- Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongming Ma
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
8
|
Congiu M, Cesarani A, Falchi L, Macciotta NPP, Dimauro C. Combined Use of Univariate and Multivariate Approaches to Detect Selection Signatures Associated with Milk or Meat Production in Cattle. Genes (Basel) 2024; 15:1516. [PMID: 39766784 PMCID: PMC11675734 DOI: 10.3390/genes15121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES The aim of this study was to investigate the genomic structure of the cattle breeds selected for meat and milk production and to identify selection signatures between them. METHODS A total of 391 animals genotyped at 41,258 SNPs and belonging to nine breeds were considered: Angus (N = 62), Charolais (46), Hereford (31), Limousin (44), and Piedmontese (24), clustered in the Meat group, and Brown Swiss (42), Holstein (63), Jersey (49), and Montbéliarde (30), clustered in the Milk group. The population stratification was analyzed by principal component analysis (PCA), whereas selection signatures were identified by univariate (Wright fixation index, FST) and multivariate (canonical discriminant analysis, CDA) approaches. Markers with FST values larger than three standard deviations from the chromosomal mean were considered interesting. Attention was focused on markers selected by both techniques. RESULTS A total of 10 SNPs located on seven different chromosomes (7, 10, 14, 16, 17, 18, and 24) were identified. Close to these SNPs (±250 kb), 165 QTL and 51 genes were found. The QTL were grouped in 45 different terms, of which three were significant (Bonferroni correction < 0.05): milk fat content, tenderness score, and length of productive life. Moreover, genes mainly associated with milk production, immunity and environmental adaptation, and reproduction were mapped close to the common SNPs. CONCLUSIONS The results of the present study suggest that the combined use of univariate and multivariate approaches can help to better identify selection signatures due to directional selection.
Collapse
Affiliation(s)
- Michele Congiu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
- Animal and Dairy Science Department, University of Georgia, Athens, GA 30602, USA
| | - Laura Falchi
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| | - Nicolò Pietro Paolo Macciotta
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| | - Corrado Dimauro
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| |
Collapse
|
9
|
Yang Y, Zhou Y, Wessel G, Hu W, Xu D. Single-cell transcriptomes reveal spermatogonial stem cells and the dynamic heterogeneity of spermatogenesis in a seasonal breeding teleost. Development 2024; 151:dev203142. [PMID: 39565695 DOI: 10.1242/dev.203142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
Seasonal spermatogenesis in fish is driven by spermatogonial stem cells (SSCs), which undergo a complex cellular process to differentiate into mature sperm. In this study, we characterized spermatogenesis in the large yellow croaker (Larimichthys crocea), a marine fish of significant commercial value, based on a high-resolution single-cell RNA-sequencing atlas of testicular cells from three distinct developmental stages: juvenile, adult differentiating and regressed testes. We detailed a continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, elucidating the molecular events involved in spermatogenesis. We uncovered dynamic heterogeneity in cellular compositions throughout the annual reproductive cycle, accompanied by strong molecular signatures within specific testicular cells. Notably, we identified a distinct population of SSCs and observed a critical metabolic transition from glycolysis to oxidative phosphorylation, enhancing our understanding of the biochemical and molecular characteristics of SSCs. Additionally, we elucidated the interactions between somatic cells and spermatogonia, illuminating the mechanisms that regulate SSC development. Overall, this work enhances our understanding of spermatogenesis in seasonal breeding teleosts and provides essential insights for the further conservation and culture of SSCs.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316021, China
| | - Yinan Zhou
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China
| | - Gary Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Weihua Hu
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316021, China
| | - Dongdong Xu
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316021, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
10
|
Sposato AL, Hollins HL, Llewellyn DR, Weber JM, Schrock MN, Farrell JA, Gagnon JA. Germ cell progression through zebrafish spermatogenesis declines with age. Development 2024; 151:dev204319. [PMID: 39470160 DOI: 10.1242/dev.204319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Vertebrate spermatogonial stem cells maintain sperm production over the lifetime of an animal, but fertility declines with age. Although morphological studies have informed our understanding of typical spermatogenesis, the molecular and cellular mechanisms underlying the maintenance and decline of spermatogenesis are not yet understood. We used single-cell RNA sequencing to generate a developmental atlas of the aging zebrafish testis. All testes contained spermatogonia, but we observed a progressive decline in spermatogenesis that correlated with age. Testes from some older males only contained spermatogonia and a reduced population of spermatocytes. Spermatogonia in older males were transcriptionally distinct from spermatogonia in testes capable of robust spermatogenesis. Immune cells including macrophages and lymphocytes drastically increased in abundance in testes that could not complete spermatogenesis. Our developmental atlas reveals the cellular changes as the testis ages and defines a molecular roadmap for the regulation of spermatogenesis.
Collapse
Affiliation(s)
- Andrea L Sposato
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Hailey L Hollins
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Darren R Llewellyn
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jenna M Weber
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Madison N Schrock
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jeffrey A Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
11
|
Yan Z, Wang P, Yang Q, Gun S. Single-Cell RNA Sequencing Reveals an Atlas of Hezuo Pig Testis Cells. Int J Mol Sci 2024; 25:9786. [PMID: 39337274 PMCID: PMC11431743 DOI: 10.3390/ijms25189786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Spermatogenesis is a complex biological process crucial for male reproduction and is characterized by intricate interactions between testicular somatic cells and germ cells. Due to the cellular heterogeneity of the testes, investigating different cell types across developmental stages has been challenging. Single-cell RNA sequencing (scRNA-seq) has emerged as a valuable approach for addressing this limitation. Here, we conducted an unbiased transcriptomic study of spermatogenesis in sexually mature 4-month-old Hezuo pigs using 10× Genomics-based scRNA-seq. A total of 16,082 cells were collected from Hezuo pig testes, including germ cells (spermatogonia (SPG), spermatocytes (SPCs), spermatids (SPTs), and sperm (SP)) and somatic cells (Sertoli cells (SCs), Leydig cells (LCs), myoid cells (MCs), endothelial cells (ECs), and natural killer (NK) cells/macrophages). Pseudo-time analysis revealed that LCs and MCs originated from common progenitors in the Hezuo pig. Functional enrichment analysis indicated that the differentially expressed genes (DEGs) in the different types of testicular germ cells were enriched in the PI3K-AKT, Wnt, HIF-1, and adherens junction signaling pathways, while the DEGs in testicular somatic cells were enriched in ECM-receptor interaction and antigen processing and presentation. Moreover, genes related to spermatogenesis, male gamete generation, sperm part, sperm flagellum, and peptide biosynthesis were expressed throughout spermatogenesis. Using immunohistochemistry, we verified several stage-specific marker genes (such as UCHL1, WT1, SOX9, and ACTA2) for SPG, SCs, and MCs. By exploring the changes in the transcription patterns of various cell types during spermatogenesis, our study provided novel insights into spermatogenesis and testicular cells in the Hezuo pig, thereby laying the foundation for the breeding and preservation of this breed.
Collapse
Affiliation(s)
| | | | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (P.W.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.Y.); (P.W.)
| |
Collapse
|
12
|
Yan Y, Zhu S, Jia M, Chen X, Qi W, Gu F, Valencak TG, Liu JX, Sun HZ. Advances in single-cell transcriptomics in animal research. J Anim Sci Biotechnol 2024; 15:102. [PMID: 39090689 PMCID: PMC11295521 DOI: 10.1186/s40104-024-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024] Open
Abstract
Understanding biological mechanisms is fundamental for improving animal production and health to meet the growing demand for high-quality protein. As an emerging biotechnology, single-cell transcriptomics has been gradually applied in diverse aspects of animal research, offering an effective method to study the gene expression of high-throughput single cells of different tissues/organs in animals. In an unprecedented manner, researchers have identified cell types/subtypes and their marker genes, inferred cellular fate trajectories, and revealed cell‒cell interactions in animals using single-cell transcriptomics. In this paper, we introduce the development of single-cell technology and review the processes, advancements, and applications of single-cell transcriptomics in animal research. We summarize recent efforts using single-cell transcriptomics to obtain a more profound understanding of animal nutrition and health, reproductive performance, genetics, and disease models in different livestock species. Moreover, the practical experience accumulated based on a large number of cases is highlighted to provide a reference for determining key factors (e.g., sample size, cell clustering, and cell type annotation) in single-cell transcriptomics analysis. We also discuss the limitations and outlook of single-cell transcriptomics in the current stage. This paper describes the comprehensive progress of single-cell transcriptomics in animal research, offering novel insights and sustainable advancements in agricultural productivity and animal health.
Collapse
Affiliation(s)
- Yunan Yan
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Jia
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyi Chen
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenlingli Qi
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fengfei Gu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Teresa G Valencak
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Agency for Health and Food Safety Austria, 1220, Vienna, Austria
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Xie S, Xu J, Chen L, Qi Y, Yang H, Tan B. Single-Cell Transcriptomic Analysis Revealed the Cell Population Changes and Cell-Cell Communication in the Liver of a Carnivorous Fish in Response to High-Carbohydrate Diet. J Nutr 2024; 154:2381-2395. [PMID: 38945299 DOI: 10.1016/j.tjnut.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Carnivorous fish have a low carbohydrate utilization ability, and the physiologic and molecular basis of glucose intolerance has not been fully illustrated. OBJECTIVES This study aimed to use largemouth bass as a model to investigate the possible mechanism of glucose intolerance in carnivorous fish with the help of single-nuclei RNA sequencing (snRNA-seq). METHODS Two diets were formulated, a low-carbohydrate (LC) diet and a high-carbohydrate (HC) diet. The feeding trial lasted for 6 wk, and then, growth performance, biochemical parameters, liver histology, and snRNA-seq were performed. RESULTS Growth performance of fish was not affected by the HC diet, while liver glucolipid metabolism disorder and liver injury were observed. A total of 13,247 and 12,848 cells from the liver derived from 2 groups were isolated and sequenced, and 7 major liver cell types were annotated by the marker genes. Hepatocytes and cholangiocytes were lower and hepatic stellate cells (HSCs) and immune cells were higher in the HC group than those in the LC group. Reclustering analysis identified 7 subtypes of hepatocytes and immune cells, respectively. The HSCs showed more cell communication with other cell types, and periportal hepatocytes showed more cell communication with other hepatocyte subtypes. Cell-cell communication mainly focused on cell junction-related signaling pathways. Uncovered by the pseudotime analysis, midzonal hepatocytes were differentiated into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitor. Cell junction and liver fibrosis-related genes were highly expressed in the HC group. HC diet induced the activation of HSCs and, therefore, led to the liver fibrosis of largemouth bass. CONCLUSIONS HC diet induces liver glucolipid metabolism disorder and liver injury of largemouth bass. The increase and activation of HSCs might be the main reason for the liver injury. In adaption to HC diet, midzonal hepatocytes differentiates into 2 major branches-biliary epithelial hepatocytes and hepatobiliary hybrid progenitors.
Collapse
Affiliation(s)
- Shiwei Xie
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China; Guangdong Provincial Key Lab of Aquatic Animals Disease Control and Healthy Culture, Zhanjiang, China.
| | - Jia Xu
- Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, China
| | - Liutong Chen
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Yu Qi
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Huijun Yang
- Guangzhou Chengyi Aquaculture, Guangzhou, Guangdong, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China; Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, PR China.
| |
Collapse
|
14
|
Chen WB, Zhang MF, Yang F, Hua JL. Applications of single-cell RNA sequencing in spermatogenesis and molecular evolution. Zool Res 2024; 45:575-585. [PMID: 38766742 PMCID: PMC11188606 DOI: 10.24272/j.issn.2095-8137.2024.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/08/2024] [Indexed: 05/22/2024] Open
Abstract
Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation. However, effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult. Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols, which have partially addressed these challenges. In this review, we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data. Furthermore, we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells, delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis, investigating abnormal spermatogenesis in humans, and, ultimately, elucidating the molecular evolution of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Wen-Bo Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Meng-Fei Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fan Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Livestock Biology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
15
|
Bush SJ, Nikola R, Han S, Suzuki S, Yoshida S, Simons BD, Goriely A. Adult Human, but Not Rodent, Spermatogonial Stem Cells Retain States with a Foetal-like Signature. Cells 2024; 13:742. [PMID: 38727278 PMCID: PMC11083513 DOI: 10.3390/cells13090742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.
Collapse
Affiliation(s)
- Stephen J. Bush
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Rafail Nikola
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Seungmin Han
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Shinnosuke Suzuki
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Benjamin D. Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Wellcome—MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Science, University of Cambridge, Cambridge CB3 0WA, UK
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Biomedical Research Centre, Oxford OX3 7JX, UK
| |
Collapse
|
16
|
Liu Y, Du M, Li X, Zhang L, Zhao B, Wang N, Dugarjaviin M. Single-Cell Transcriptome Sequencing Reveals Molecular Expression Differences and Marker Genes in Testes during the Sexual Maturation of Mongolian Horses. Animals (Basel) 2024; 14:1258. [PMID: 38731262 PMCID: PMC11082968 DOI: 10.3390/ani14091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to investigate differences in testicular tissue morphology, gene expression, and marker genes between sexually immature (1-year-old) and sexually mature (10-year-old) Mongolian horses. The purposes of our research were to provide insights into the reproductive physiology of male Mongolian horses and to identify potential markers for sexual maturity. The methods we applied included the transcriptomic profiling of testicular cells using single-cell sequencing techniques. Our results revealed significant differences in tissue morphology and gene expression patterns between the two age groups. Specifically, 25 cell clusters and 10 cell types were identified, including spermatogonial and somatic cells. Differential gene expression analysis highlighted distinct patterns related to cellular infrastructure in sexually immature horses and spermatogenesis in sexually mature horses. Marker genes specific to each stage were also identified, including APOA1, AMH, TAC3, INHA, SPARC, and SOX9 for the sexually immature stage, and PRM1, PRM2, LOC100051500, PRSS37, HMGB4, and H1-9 for the sexually mature stage. These findings contribute to a deeper understanding of testicular development and spermatogenesis in Mongolian horses and have potential applications in equine reproductive biology and breeding programs. In conclusion, this study provides valuable insights into the molecular mechanisms underlying sexual maturity in Mongolian horses.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
17
|
Wang H, Yu H, Li Q. Integrative analysis of single-nucleus RNA-seq and bulk RNA-seq reveals germline cells development dynamics and niches in the Pacific oyster gonad. iScience 2024; 27:109499. [PMID: 38571762 PMCID: PMC10987912 DOI: 10.1016/j.isci.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Gametogenesis drives the maturation of germ cell precursors into functional gametes, facilitated by interactions with the niche environment. However, the molecular mechanisms, especially in invertebrates, remain incompletely understood. In this study, the gonadal microenvironment and gametogenic processes in the Pacific oyster, a model for diffuse gonadal organization and periodic gametogenesis, are investigated. We combine single-nucleus RNA-seq and bulk RNA-seq to analyze gonadal microenvironments in oysters. Twenty-three male and nineteen female gonadal cell clusters are identified, revealing four male and three female germ cell types, alongside follicular cells in females and Sertoli/Leydig cells in males. The NOTCH and BMP (bone morphogenetic protein) signaling pathways play a significant role in the male germline niche, suggesting similarities with mammalian germ cell microenvironment. This study offers valuable insights into germ cell developmental transitions and microenvironmental characteristics.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
18
|
A V, Kumar A, Mahala S, Chandra Janga S, Chauhan A, Mehrotra A, Kumar De A, Ranjan Sahu A, Firdous Ahmad S, Vempadapu V, Dutt T. Revelation of genetic diversity and genomic footprints of adaptation in Indian pig breeds. Gene 2024; 893:147950. [PMID: 37918549 DOI: 10.1016/j.gene.2023.147950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
In the present study, the genetic diversity measures among four Indian domestic breeds of pig namely Agonda Goan, Ghurrah, Ghungroo, and Nicobari, of different agro-climatic regions of country were explored and compared with European commercial breeds, European wild boar and Chinese domestic breeds. The double digest restriction site-associated DNA sequencing (ddRADseq) data of Indian pigs (102) and Landrace (10 animals) were generated and whole genome sequencing data of exotic pigs (60 animals) from public data repository were used in the study. The principal component analysis (PCA), admixture analysis and phylogenetic analysis revealed that Indian breeds were closer in ancestry to Chinese breeds than European breeds. European breeds exhibited highest genetic diversity measures among all the considered breeds. Among Indian breeds, Agonda Goan and Ghurrah were found to be more genetically diverse than Nicobari and Ghungroo. The selection signature regions in Indian pigs were explored using iHS and XP-EHH, and during iHS analysis, it was observed that genes related to growth, reproduction, health, meat quality, sensory perception and behavior were found to be under selection pressure in Indian pig breeds. Strong selection signatures were recorded in 24.25-25.25 Mb region of SSC18, 123.25-124 Mb region of SSC15 and 118.75-119.5 Mb region of SSC2 in most of the Indian breeds upon pairwise comparison with European commercial breeds using XP-EHH. These regions were harboring some important genes such as EPHA4 for thermotolerance, TAS2R16, FEZF1, CADPS2 and PTPRZ1 for adaptability to scavenging system of rearing, TRIM36 and PGGT1B for disease resistance and CCDC112, PIAS1, FEM1B and ITGA11 for reproduction.
Collapse
Affiliation(s)
- Vani A
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Amit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India.
| | - Sudarshan Mahala
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Sarath Chandra Janga
- Luddy School of Informatics, Computing, and Engineering, Indiana University, IUPUI, Indianapolis, IN, USA
| | - Anuj Chauhan
- Livestock Production and Management, Indian Veterinary Research Institute, Bareilly, UP, India
| | | | - Arun Kumar De
- Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Amiya Ranjan Sahu
- Central Coastal Agricultural Research Institute, Old Goa, Goa, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Varshini Vempadapu
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Triveni Dutt
- Livestock Production and Management, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
19
|
Wang X, Pei J, Xiong L, Kang Y, Guo S, Cao M, Ding Z, Bao P, Chu M, Liang C, Yan P, Guo X. Single-cell RNA sequencing and UPHLC-MS/MS targeted metabolomics offer new insights into the etiological basis for male cattle-yak sterility. Int J Biol Macromol 2023; 253:126831. [PMID: 37716658 DOI: 10.1016/j.ijbiomac.2023.126831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
The variety of species can be efficiently increased by interspecific hybridization. However, because the males in the hybrid progeny are usually sterile, this heterosis cannot be employed when other cattle and yaks are hybridized. While some system-level studies have sought to explore the etiological basis for male cattle-yak sterility, no systematic cellular analyses of this phenomenon have yet been performed. Here, single-cell RNA sequencing and UPHLC-MS/MS targeted metabolomics methods were used to study the differences in testicular tissue between 4-year-old male yak and 4-year-old male cattle-yak, providing new and comprehensive insights into the causes of male cattle-yak sterility. Cattle-yak testes samples detected 6 somatic cell types and one mixed germ cell type. Comparisons of these cell types revealed the more significant differences in Sertoli cells (SCs) and [Leydig cells and myoid cells (LCs_MCs)] between yak and cattle-yak samples compared to other somatic cell clusters. Even though the LCs and MCs from yaks and cattle-yaks were derived from the differentiation of the same progenitor cells, a high degree of overlap between LCs and MCs was observed in yak samples. Still, only a small overlap between LCs and MCs was observed in cattle-yak samples. Functional enrichment analyses revealed that genes down-regulated in cattle-yak SCs were primarily enriched in biological activity, whereas up-regulated genes in these cells were enriched for apoptotic activity. Furthermore, the genes of up-regulated in LCs_MCs of cattle-yak were significantly enriched in enzyme inhibitor and molecular function inhibitor activity. On the other hand, the genes of down-regulated in these cells were enriched for signal receptor binding, molecular function regulation, positive regulation of biological processes, and regulation of cell communication activity. The most significant annotated differences between yak and cattle-yak LCs_MCs were associated with cell-to-cell communication. While yak LCs_MCs regulated spermatogenic cells at spermatogonia, spermatocyte, and spermatid levels, no such relationships were found between cattle-yak LCs_MCs and germ cells. This may suggest that the somatic niche in male cattle-yak testes is a microenvironment that is ultimately not favorable for spermatogenesis.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
20
|
Zhao YD, Yang CX, Du ZQ. Integrated single cell transcriptome sequencing analysis reveals species-specific genes and molecular pathways for pig spermiogenesis. Reprod Domest Anim 2023; 58:1745-1755. [PMID: 37874861 DOI: 10.1111/rda.14493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Mammalian spermatogenesis is a highly complicated and intricately organized process involving spermatogonia propagation (mitosis) and meiotic differentiation into mature sperm cells (spermiogenesis). In pigs, spermatogonia development and the role of somatic cells in spermatogenesis were previously investigated in detail. However, the characterization of key molecules fundamental to pig spermiogenesis remains less explored. Here we compared spermatogenesis between humans and pigs, focusing on spermiogenesis, by integrative testicular single-cell RNA sequencing (scRNA-seq) analysis. Human and pig testicular cells were clustered into 26 different groups, with cell-type-specific markers and signalling pathways. For spermiogenesis, pseudo-time analysis classified the lineage differentiation routes for round, elongated spermatids and spermatozoa. Moreover, markers and molecular pathways specific to each type of spermatids were examined for humans and pigs, respectively. Furthermore, high-dimensional weighted gene co-expression network analysis (hdWGCNA) identified gene modules specific for each type of human and pig spermatids. Hub genes (pig: SNRPD2.1 related to alternative splicing; human: CATSPERZ, Ca[2+] ion channel) potentially involved in spermiogenesis were also revealed. Taken together, our integrative analysis found that human and pig spermiogeneses involve specific genes and molecular pathways and provided resources and insights for further functional investigation on spermatid maturation and male reproductive ability.
Collapse
Affiliation(s)
- Ya-Dan Zhao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
21
|
Sposato AL, Llewellyn DR, Weber JM, Hollins HL, Schrock MN, Farrell JA, Gagnon JA. Germ cells do not progress through spermatogenesis in the infertile zebrafish testis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556432. [PMID: 37732254 PMCID: PMC10508784 DOI: 10.1101/2023.09.05.556432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Vertebrate spermatogonial stem cells maintain sperm production over the lifetime of an animal but fertility declines with age. While morphological studies have greatly informed our understanding of typical spermatogenesis, the molecular and cellular mechanisms underlying spermatogenesis are not yet understood, particularly with respect to the onset of fertility. We used single-cell RNA sequencing to generate a developmental atlas of the zebrafish testis. Using 5 timepoints across the adult life of a zebrafish, we described cellular profiles in the testis during and after fertility. While all germ cell stages of spermatogenesis are detected in testes from fertile adult zebrafish, testes from older infertile males only contained spermatogonia and a reduced population of spermatocytes. These remaining germ cells are transcriptionally distinct from fertile spermatogonia. Immune cells including macrophages and lymphocytes drastically increase in abundance in infertile testes. Our developmental atlas reveals the cellular changes as the testis ages and defines a molecular roadmap for the regulation of male fertility.
Collapse
Affiliation(s)
- Andrea L. Sposato
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | | | - Jenna M. Weber
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Hailey L. Hollins
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Madison N. Schrock
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A. Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|