1
|
Zhou B, Liu F, Wan Y, Luo L, Ye Z, He J, Tang L, Ma W, Dai R. Construction of a prognostic risk model for clear cell renal cell carcinomas based on centrosome amplification-related genes. Mol Genet Genomics 2025; 300:30. [PMID: 40075035 PMCID: PMC11903526 DOI: 10.1007/s00438-025-02237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the urological malignancy with the highest incidence, centrosome amplification-associated genes (CARGs) have been suggested to be associated with carcinogenesis, but their roles in ccRCC are still incompletely understood. This study utilizes bioinformatics to explore the role of CARGs in the pathogenesis of ccRCC and to establish a prognostic model for ccRCC related to CARGs. Based on publicly available ccRCC datasets, 2312 differentially expressed genes (DEGs) were identified (control vs. ccRCC). Disease samples were classified into high and low scoring groups based on CARG scores and analysed for differences to obtain 345 DEGs associated with CARG scores (S-DEGs). 137 candidate genes were obtained by taking the intersection of DEGs and S-DEGs. Six prognostic genes (PCP4, SLN, PI3, PROX1, VAT1L, and KLK2) were then screened by univariate Cox, LASSO, and multifactorial Cox regression. These genes exhibit a high degree of enrichment in ribosome-associated pathways. Both risk score and age were independent prognostic factors, and the Nomogram constructed based on them had a good predictive performance (AUC > 0.7). In addition, immunological analyses identified 6 different immune cells and 23 immune checkpoints between the high- and low-risk groups, whereas mutational analyses identified frequent VHL mutations in both high- and low-risk groups. Finally, 93 potentially sensitive drugs were identified. In conclusion, this study identified six CARGs as prognostic genes for ccRCC and established a risk model with predictive value. These findings provide insights for prognostic prediction of ccRCC, optimisation of clinical management and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Bingru Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fengye Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Wan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Lin Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhenzhong Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Jinwei He
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Long Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Rongyang Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China.
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Xu X, Gan J, Gao Z, Li R, Huang D, Lin L, Luo Y, Yang Q, Xu J, Li Y, Fang Q, Peng T, Wang Y, Xu Z, Huang A, Hong H, Lei F, Huang W, Leng J, Li T, Bo X, Chen H, Li C, Gu J. 3D genome landscape of primary and metastatic colorectal carcinoma reveals the regulatory mechanism of tumorigenic and metastatic gene expression. Commun Biol 2025; 8:365. [PMID: 40038385 PMCID: PMC11880527 DOI: 10.1038/s42003-025-07647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Colorectal carcinoma (CRC) is a deadly cancer with an aggressive nature, and how CRC tumor cells manage to translocate and proliferate in a new tissue environment remains not fully understood. Recently, higher-order chromatin structures and spatial genome organization are increasingly implicated in diseases including cancer, but in-depth studies of three-dimensional genome (3D genome) of metastatic cancer are currently lacking, preventing the understanding of the roles of genome organization during metastasis. Here we perform multi-omics profiling of matched normal colon, primary tumor, lymph node metastasis, liver metastasis and normal liver tissue from CRC patients using Hi-C, ATAC-seq and RNA-seq technologies. We find that widespread alteration of 3D chromatin structure is accompanied by dysregulation of genes including SPP1 during the tumorigenesis or metastasis of CRC. Remarkably, the hierarchy of topological associating domain (TAD) changes dynamically, which challenges the traditional view that the TAD structure between tumor and normal tissue is conservative. In addition, we define compartment stability score to measure large-scale alteration in metastatic tumors. To integrate multi-omics data and recognize candidate genes driving cancer metastasis, a pipeline is developed based on Hi-C, RNA-seq and ATAC-seq data. And three candidate genes ARL4C, FLNA, and RGCC are validated to be associated with CRC cell migration and invasion using in vitro knockout experiments. Overall, these data resources and results offer new insights into the involvement of 3D genome in cancer metastasis.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Academy of Military Medical Sciences, Beijing, China
| | - Jingbo Gan
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Ruifeng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Dandan Huang
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| | - Lin Lin
- Academy of Military Medical Sciences, Beijing, China
| | - Yawen Luo
- Academy of Military Medical Sciences, Beijing, China
| | - Qian Yang
- Academy of Military Medical Sciences, Beijing, China
| | - Jingxuan Xu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
| | - Yaru Li
- Academy of Military Medical Sciences, Beijing, China
| | - Qing Fang
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Ting Peng
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Yaqi Wang
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zihan Xu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - An Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Haopeng Hong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Fuming Lei
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Wensheng Huang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Jianjun Leng
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
- Department of Hepatopancreatobiliary Surgery, Peking University Shougang Hospital, Beijing, China
| | - Tingting Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing, China.
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China.
| | - Jin Gu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China.
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Peking University International Cancer Institute, Beijing, China.
| |
Collapse
|
3
|
Lu Q, Wu Y, Yu Q, Ouyang J. Prognostic Value of Centrosome Replication-Related Genes in Prostate Cancer Based on Transcriptomic and Mendelian Randomization. Am J Mens Health 2025; 19:15579883251319125. [PMID: 40099722 PMCID: PMC11920994 DOI: 10.1177/15579883251319125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 03/20/2025] Open
Abstract
Prostate cancer (PCa) is a significant global health concern, with its incidence and mortality rates projected to rise due to population aging. In this study, we utilized PCa transcriptome data from public databases and applied bioinformatics methods to identify three prognostic genes (CDC20, RAD51, and TTK) related to centrosome duplication in PCa. CDC20 is involved in cell cycle regulation, RAD51 in deoxyribonucleic acid double-strand break repair, and TTK in spindle assembly checkpoint function and cell proliferation. We constructed a risk model and a nomogram model, both demonstrating moderate to good predictive performance with area under the curve values ranging from 0.611 to 0.765 at different time points. Gene set enrichment analysis revealed that these genes were enriched in 64 pathways, including the cell cycle pathway, which is dysregulated in cancer. Furthermore, we analyzed the immune microenvironment and identified 13 differential immune cells and 13 differential immune checkpoints between high- and low-risk groups, providing insights into potential immunotherapy targets for PCa. In conclusion, this study contributes to a deeper understanding of PCa pathogenesis and lays important theoretical and experimental foundations for developing new diagnostic markers and treatment strategies. Future research requires more clinical samples and continued monitoring of the mechanism of these genes in PCa.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Yufan Wu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Qiwei Yu
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, China
| | - Jun Ouyang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Xu Z, Lei Z, Peng S, Fu X, Xu Y, Pan G. Dysregulation of deubiquitinases in gastric cancer progression. Front Oncol 2024; 14:1456710. [PMID: 39605891 PMCID: PMC11598704 DOI: 10.3389/fonc.2024.1456710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Gastric cancer (GC), characterized by a high incidence rate, poses significant clinical challenges owing to its poor prognosis despite advancements in diagnostic and therapeutic approaches. Therefore, a comprehensive understanding of the molecular mechanisms driving GC progression is crucial for identifying predictive markers and defining treatment targets. Deubiquitinating enzymes (DUBs), also called deubiquitinases, function as reverse transcriptases within the ubiquitin-proteasome system to counteract protein degradation. Recent findings suggest that DUB dysregulation could be a crucial factor in GC pathogenesis. In this review, we examined recent research findings on DUBs in the context of GC, elucidating their molecular characteristics, categorizations, and roles while also exploring the potential mechanisms underlying their dysregulation in GC. Furthermore, we assessed the therapeutic efficacy of DUB inhibitors in treating malignancies and evaluated the prevalence of aberrant DUB expression in GC.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoqing Pan
- First Affiliated Hospital of Kunming Medical University, Department of Pathology, Kunming, China
| |
Collapse
|
5
|
Zhou K, He Y, Lin X, Zhou H, Xu X, Xu J. KIFC1 depends on TRIM37-mediated ubiquitination of PLK4 to promote centrosome amplification in endometrial cancer. Cell Death Discov 2024; 10:419. [PMID: 39349439 PMCID: PMC11442630 DOI: 10.1038/s41420-024-02190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Endometrial cancer (EC), as one of the most common cancers, severely threatens female reproductive health. Our previous study has shown that Kinesin family member C1 (KIFC1) played crucial roles in the progression of EC. In addition, abnormal centrosome amplification, which was reported to be partially regulated by KIFC1, usually occurred in different cancers. However, whether KIFC1 promoted EC through centrosome amplification and the potential mechanism remain to be revealed. The present study demonstrated that overexpressed KIFC1, which exhibited a worse prognosis, had a positive correlation with an increased number of centrosomes in human EC samples. In addition, KIFC1 overexpression in EC cells prompted centrosome amplification, chromosomal instability, and cell cycle progression. Moreover, we demonstrated that KIFC1 inhibited E3 ubiquitin-protein ligase TRIM37 to maintain the stability of PLK4 by reducing its ubiquitination degradation, and finally promoting centrosome amplification and EC progression in vitro. Finally, the contributing role of KIFC1 and the inhibitory effect of TRIM37 on EC development and metastasis was verified in a nude mouse xenograft model. Our study elucidated that KIFC1 depends on TRIM37-mediated reduced ubiquitination degradation of PLK4 to promote centrosome amplification and EC progression, thus providing a potential prognostic marker and promising therapeutic target for EC in the future.
Collapse
Affiliation(s)
- Kening Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Yingying He
- Department of Pathology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Xi Lin
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Huihao Zhou
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Xiaomin Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China
| | - Jingui Xu
- Department of Gynaecology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324000, China.
| |
Collapse
|
6
|
Chen L, Zhang L, He H, Shao F, Yu Z, Gao Y, He J. Ubiquitin-specific protease 54 regulates GLUT1-mediated aerobic glycolysis to inhibit lung adenocarcinoma progression by modifying p53 degradation. Oncogene 2024; 43:2025-2037. [PMID: 38744954 DOI: 10.1038/s41388-024-03047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent types of cancer. Ubiquitination is crucial in modulating cell proliferation and aerobic glycolysis in cancer. The frequency of TP53 mutations in LUAD is approximately 50%. Currently, therapeutic targets for wild-type (WT) p53-expressing LUAD are limited. In the present study, we systemically explored the expression of ubiquitin-specific protease genes using public datasets. Then, we focused on ubiquitin-specific protease 54 (USP54), and explored its prognostic significance in LUAD patients using public datasets, analyses, and an independent cohort from our center. We found that the expression of USP54 was lower in LUAD tissues compared with that in the paracancerous tissues. Low USP54 expression levels were linked to a malignant phenotype and worse survival in patients with LUAD. The results of functional experiments revealed that up-regulation of USP54 suppressed LUAD cell proliferation in vivo and in vitro. USP54 directly interacted with p53 protein and the levels of ubiquitinated p53 were inversely related to USP54 levels, consistent with a role of USP54 in deubiquitinating p53 in p53-WT LUAD cells. Moreover, up-regulation of the USP54 expression inhibited aerobic glycolysis in LUAD cells. Importantly, we confirmed that USP54 inhibited aerobic glycolysis and the growth of tumor cells by a p53-mediated decrease in glucose transporter 1 (GLUT1) expression in p53-WT LUAD cells. Altogether, we determined a novel mechanism of survival in the p53-WT LUAD cells to endure the malnourished tumor microenvironment and provided insights into the role of USP54 in the adaptation of p53-WT LUAD cells to metabolic stress.
Collapse
Affiliation(s)
- Leifeng Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haihua He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fei Shao
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Laboratory of Thoracic Oncology & Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- Translational Medicine Platform, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
7
|
Liu Y, Jiang H, Hu K, Zou H, Zhang W, Liu J, Jian X. CircPRMT5 promotes progression of osteosarcoma by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. PLoS One 2024; 19:e0298947. [PMID: 38626179 PMCID: PMC11020494 DOI: 10.1371/journal.pone.0298947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 04/18/2024] Open
Abstract
Research has demonstrated that circular RNAs (circRNAs) exert critical functions in the occurrence and progression of numerous malignant tumors. CircPRMT5 was recently reported to be involved in the pathogenesis of cancers. However, the potential role of circPRMT5 in osteosarcoma needs further investigation. In present study, our results suggested that circPRMT5 was highly upregulated in osteosarcoma cells and mainly localizes in the cytoplasm. CircPRMT5 promoted the proliferation, migration and invasion capacities of osteosarcoma cells, and suppressed cell apoptosis. Knockdown of circPRMT5 exerted the opposite effects. Mechanically, circPRMT5 promoted the binding of CNBP to CDK6 mRNA, which enhanced the stability of CDK6 mRNA and facilitated its translation, thereby promoting the progression of osteosarcoma. Knockdown of CDK6 reversed the promoting effect of circPRMT5 on osteosarcoma cells. These findings suggest that circPRMT5 promotes osteosarcoma cell malignant activity by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. Thus, circPRMT5 may represent a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yunlu Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keli Hu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Zou
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Weiguo Zhang
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jiangtao Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiaofei Jian
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
8
|
Li KQ, Bai X, Ke AT, Ding SQ, Zhang CD, Dai DQ. Ubiquitin-specific proteases: From biological functions to potential therapeutic applications in gastric cancer. Biomed Pharmacother 2024; 173:116323. [PMID: 38401523 DOI: 10.1016/j.biopha.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Deubiquitination, a post-translational modification regulated by deubiquitinases, is essential for cancer initiation and progression. Ubiquitin-specific proteases (USPs) are essential elements of the deubiquitinase family, and are overexpressed in gastric cancer (GC). Through the regulation of several signaling pathways, such as Wnt/β-Catenin and nuclear factor-κB signaling, and the promotion of the expression of deubiquitination- and stabilization-associated proteins, USPs promote the proliferation, metastasis, invasion, and epithelial-mesenchymal transition of GC. In addition, the expression of USPs is closely related to clinicopathological features, patient prognosis, and chemotherapy resistance. USPs therefore could be used as prognostic biomarkers. USP targeting small molecule inhibitors have demonstrated strong anticancer activity. However, they have not yet been tested in the clinic. This article provides an overview of the latest fundamental research on USPs in GC, aiming to enhance the understanding of how USPs contribute to GC progression, and identifying possible targets for GC treatment to improve patient survival.
Collapse
Affiliation(s)
- Kai-Qiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Ang-Ting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Si-Qi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Chun-Dong Zhang
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Dong-Qiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China; Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China.
| |
Collapse
|
9
|
Athwal H, Kochiyanil A, Bhat V, Allan AL, Parsyan A. Centrosomes and associated proteins in pathogenesis and treatment of breast cancer. Front Oncol 2024; 14:1370565. [PMID: 38606093 PMCID: PMC11007099 DOI: 10.3389/fonc.2024.1370565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide. Despite significant advances in treatment, it remains one of the leading causes of female mortality. The inability to effectively treat advanced and/or treatment-resistant breast cancer demonstrates the need to develop novel treatment strategies and targeted therapies. Centrosomes and their associated proteins have been shown to play key roles in the pathogenesis of breast cancer and thus represent promising targets for drug and biomarker development. Centrosomes are fundamental cellular structures in the mammalian cell that are responsible for error-free execution of cell division. Centrosome amplification and aberrant expression of its associated proteins such as Polo-like kinases (PLKs), Aurora kinases (AURKs) and Cyclin-dependent kinases (CDKs) have been observed in various cancers, including breast cancer. These aberrations in breast cancer are thought to cause improper chromosomal segregation during mitosis, leading to chromosomal instability and uncontrolled cell division, allowing cancer cells to acquire new genetic changes that result in evasion of cell death and the promotion of tumor formation. Various chemical compounds developed against PLKs and AURKs have shown meaningful antitumorigenic effects in breast cancer cells in vitro and in vivo. The mechanism of action of these inhibitors is likely related to exacerbation of numerical genomic instability, such as aneuploidy or polyploidy. Furthermore, growing evidence demonstrates enhanced antitumorigenic effects when inhibitors specific to centrosome-associated proteins are used in combination with either radiation or chemotherapy drugs in breast cancer. This review focuses on the current knowledge regarding the roles of centrosome and centrosome-associated proteins in breast cancer pathogenesis and their utility as novel targets for breast cancer treatment.
Collapse
Affiliation(s)
- Harjot Athwal
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arpitha Kochiyanil
- Faculty of Science, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
| | - Alison L. Allan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of General Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Surgery, St. Joseph’s Health Care London and London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
10
|
Zhou C, Zhang X, Ma H, Zhou Y, Meng Y, Chen C, Shi G, Yu W, Zhang J. USP54 is a potential therapeutic target in castration-resistant prostate cancer. BMC Urol 2024; 24:32. [PMID: 38321455 PMCID: PMC10845770 DOI: 10.1186/s12894-024-01418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND USP54, a ubiquitin-specific protease in the deubiquitinase (DUB) family, facilitates the malignant progression of several types of cancer. However, the role of USP54 in prostate cancer (PCa), especially castration-resistant prostate cancer (CRPC), remains unknown. METHODS We established the CRPC LNCaP-AI cell line from the hormone-sensitive prostate cancer (HSPC) LNCaP cell line. RNA-Seq was utilized to explore DUB expression levels in LNCaP and LNCaP-AI. USP54 was knocked down, and its effects on cell growth were evaluated in vitro and in vivo. Bioinformatics analyses were conducted to explore signaling pathways affected by USP54 in PCa. Quantitative polymerase chain reaction was used to confirm key signaling pathways involved. RESULTS USP54 was the most strongly upregulated DUB in LNCaP-AI cells compared with LNCaP cells. USP54 levels were higher in PCa than in normal tissues. USP54 silencing suppressed the proliferation of PCa cell lines, both in vitro and in vivo. USP54 expression was positively correlated with the androgen receptor (AR) signaling level in PCa samples, and USP54 knockdown inhibited AR signaling in PCa cells. CONCLUSIONS USP54 was upregulated during HSPC progression to CRPC. USP54 depletion suppressed CRPC cell proliferation both in vitro and in vivo. USP54 may facilitate PCa progression by regulating AR signaling.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| | - Xuehu Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| | - Hangbin Ma
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| | - Yinghao Zhou
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| | - Yibo Meng
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| | - Chenchen Chen
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| | - Guowei Shi
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, P.R. China
| | - Wandong Yu
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, P.R. China.
| | - Jun Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, P.R. China.
| |
Collapse
|
11
|
Radak M, Ghamari N, Fallahi H. Identification of common factors among fibrosarcoma, rhabdomyosarcoma, and osteosarcoma by network analysis. Biosystems 2024; 235:105093. [PMID: 38052344 DOI: 10.1016/j.biosystems.2023.105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sarcoma cancers are uncommon malignant tumors, and there are many subgroups, including fibrosarcoma (FS), which mainly affects middle-aged and older adults in deep soft tissues. Rhabdomyosarcoma (RMS), on the other hand, is the most common soft-tissue sarcoma in children and is located in the head and neck area. Osteosarcomas (OS) is the predominant form of primary bone cancer among young adults, primarily resulting from sporadically random mutations. This frequently results in the dissemination of cancer cells to the lungs, commonly known as metastasis. Mesodermal cells are the origin of sarcoma cancers. In this study, a rather radical approach has been applied. Instead of comparing homogenous cancer types, we focus on three main subtypes of sarcoma: fibrosarcoma, rhabdomyosarcoma, and osteosarcoma, and compare their gene expression with normal cell groups to identify the differentially expressed genes (DEGs). Next, by applying protein-protein interaction (PPI) network analysis, we determine the hub genes and crucial factors, such as transcription factors (TFs), affected by these types of cancer. Our findings indicate a modification in a range of pathways associated with cell cycle, extracellular matrix, and DNA repair in these three malignancies. Results showed that fibrosarcoma (FS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) had 653, 1270, and 2823 differentially expressed genes (DEGs), respectively. Interestingly, there were 24 DEGs common to all three types. Network analysis showed that the fibrosarcoma network had two sub-networks identified in FS that contributed to the catabolic process of collagen via the G-protein coupled receptor signaling pathway. The rhabdomyosarcoma network included nine sub-networks associated with cell division, extracellular matrix organization, mRNA splicing via spliceosome, and others. The osteosarcoma network has 13 sub-networks, including mRNA splicing, sister chromatid cohesion, DNA repair, etc. In conclusion, the common DEGs identified in this study have been shown to play significant and multiple roles in various other cancers based on the literature review, indicating their significance.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Nakisa Ghamari
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| |
Collapse
|
12
|
Li S, Song Y, Wang K, Liu G, Dong X, Yang F, Chen G, Cao C, Zhang H, Wang M, Li Y, Zeng T, Liu C, Li B. USP32 deubiquitinase: cellular functions, regulatory mechanisms, and potential as a cancer therapy target. Cell Death Discov 2023; 9:338. [PMID: 37679322 PMCID: PMC10485055 DOI: 10.1038/s41420-023-01629-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
An essential protein regulatory system in cells is the ubiquitin-proteasome pathway. The substrate is modified by the ubiquitin ligase system (E1-E2-E3) in this pathway, which is a dynamic protein bidirectional modification regulation system. Deubiquitinating enzymes (DUBs) are tasked with specifically hydrolyzing ubiquitin molecules from ubiquitin-linked proteins or precursor proteins and inversely regulating protein degradation, which in turn affects protein function. The ubiquitin-specific peptidase 32 (USP32) protein level is associated with cell cycle progression, proliferation, migration, invasion, and other cellular biological processes. It is an important member of the ubiquitin-specific protease family. It is thought that USP32, a unique enzyme that controls the ubiquitin process, is closely linked to the onset and progression of many cancers, including small cell lung cancer, gastric cancer, breast cancer, epithelial ovarian cancer, glioblastoma, gastrointestinal stromal tumor, acute myeloid leukemia, and pancreatic adenocarcinoma. In this review, we focus on the multiple mechanisms of USP32 in various tumor types and show that USP32 controls the stability of many distinct proteins. Therefore, USP32 is a key and promising therapeutic target for tumor therapy, which could provide important new insights and avenues for antitumor drug development. The therapeutic importance of USP32 in cancer treatment remains to be further proven. In conclusion, there are many options for the future direction of USP32 research.
Collapse
Grants
- Bing Li, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China Chunyan Liu, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kexin Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Teng Zeng
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|