1
|
Walker AJ, Rinaldi G, Shakir EMN. Molecular interactions between male and female schistosomes - a role for remote communication? Trends Parasitol 2025; 41:28-37. [PMID: 39665922 DOI: 10.1016/j.pt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Persistent physical interaction between male and female schistosome adult worms has long been shown to be crucial for their development and sexual maturation, particularly for the female. Although not fully understood, worm pairing promotes local molecular communication between sexes, driving gonad and vitellaria differentiation. In this opinion article we (i) summarise evidence concerning molecular interactions underlying the physical pairing, and (ii) propose a new paradigm whereby remote male-female molecular communication may play an overlooked role in parasite sexual maturation. In this context we discuss recent research that supports both physical and remote male-female interactions driving differentiation of the gonads/vitellaria. This remote communication between sexes may be mediated by excretory-secretory products (ESPs). Integrated hypotheses are presented to stimulate research in this important and emerging field.
Collapse
Affiliation(s)
- Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK.
| | - Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, SY23 3DA, UK; Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Eman M N Shakir
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
2
|
Tashibu A, Inaoka DK, Sakamoto K, Murakami K, Zannatul F, Kita K, Ichikawa-Seki M. Fumarate respiration of Fasciola flukes as a potential drug target. Front Cell Infect Microbiol 2024; 13:1302114. [PMID: 38332950 PMCID: PMC10850294 DOI: 10.3389/fcimb.2023.1302114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Fascioliasis is a neglected tropical zoonotic disease caused by liver flukes belonging to the genus Fasciola. The emergence of resistance to triclabendazole, the only World Health Organization-recommended drug for this disease, highlights the need for the development of new drugs. Helminths possess an anaerobic mitochondrial respiratory chain (fumarate respiration) which is considered a potential drug target. This study aimed to evaluate the occurrence of fumarate respiration in Fasciola flukes. We analyzed the properties of the respiratory chain of Fasciola flukes in both adults and newly excysted juveniles (NEJs). Fasciola flukes travel and mature through the stomach, bowel, and abdominal cavity to the liver, where oxygen levels gradually decline. High fumarate reductase activity was observed in the mitochondrial fraction of adult Fasciola flukes. Furthermore, rhodoquinone-10 (RQ10 Em'= -63 mV), a low-potential electron mediator used in fumarate respiration was found to be predominant in adults. In contrast, the activity of oxygen respiration was low in adults. Rotenone, atpenin A5, and ascochlorin, typical inhibitors of mitochondrial enzymes in complexes I, II, and III, respectively, inhibit the activity of each enzyme in the adult mitochondrial fraction. These inhibitors were then used for in vitro viability tests of NEJs. Under aerobic conditions, NEJs were killed by rotenone or ascochlorin, which inhibit aerobic respiration (complex I-III), whereas atpenin A5, which inhibits complex II involved in fumarate respiration, did not affect NEJs. Moreover, ubiquinone-10 (UQ10 Em'= +110 mV), which is used in oxidative respiration, was detected in NEJs, in addition to RQ10. In contrast, under anaerobic conditions, rotenone and atpenin A5, which inhibit fumarate respiration (complex I-II), were crucial for NEJs. These findings demonstrate that NEJs have active hybrid respiration, in which they can properly use both oxygen and fumarate respiration, depending on oxygen availability. Thus, fumarate respiration is a promising drug target for Fasciola flukes, because it plays an essential role in both adults and NEJs.
Collapse
Affiliation(s)
- Atsushi Tashibu
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kimitoshi Sakamoto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Kenji Murakami
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Ferdoush Zannatul
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
3
|
Sekii K, Watanabe T, Ito R, Yoshikawa A, Ichikawa-Seki M, Sakamoto K, Kobayashi K. Fractionation of a sex-inducing substance from flatworms using open-column chromatography and reverse-phase high-performance liquid chromatography. STAR Protoc 2023; 4:102625. [PMID: 39491554 PMCID: PMC10628896 DOI: 10.1016/j.xpro.2023.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/28/2023] [Accepted: 09/15/2023] [Indexed: 11/05/2024] Open
Abstract
A substance that sexualizes planarians, an ancestral group of parasitic flatworms, is widely present in planarians and parasitic flatworms. Here, we present a protocol for extracting and purifying the active fraction with sex-inducing activity. We describe steps for homogenization of flatworms, sample concentration, open-column chromatography, and reverse-phase high-performance liquid chromatography. We then detail a feeding bioassay to confirm sex-inducing activity. The obtained active fraction may positively affect parasitic flatworm sexual maturation and can be tested by adding it into the culture media. For complete details on the use and execution of this protocol, please refer to Sekii et al. (2023).1.
Collapse
Affiliation(s)
- Kiyono Sekii
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan; Faculty of Business and Commerce, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan
| | - Taro Watanabe
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Riku Ito
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Akitoshi Yoshikawa
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Kimitoshi Sakamoto
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan.
| | - Kazuya Kobayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|