1
|
Castañeda-Sampedro A, Alcorta E, Gomez-Diaz C. Cell-specific genetic expression profile of antennal glia in Drosophila reveals candidate genes in neuron-glia interactions. Sci Rep 2025; 15:5493. [PMID: 39953089 PMCID: PMC11828885 DOI: 10.1038/s41598-025-87834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Understanding the genetic basis of neuron-glia interactions is essential to comprehend the function of glia. Recent studies on Drosophila antennal glia Mz317 has shown their role in olfactory perception. In the antenna, the Mz317-type glia tightly envelops the somas of olfactory sensory neurons and axons already covered by wrapping glia. Here, we investigate candidate genes involved in glial regulation in olfactory reception of Drosophila. Targeted transcriptional profiling reveals that Mz317 glial cells express 21% of Drosophila genes emphasizing functions related to cell junction organization, synaptic transmission, and chemical stimuli response. Comparative gene expression analysis with other glial cell types in both the antenna and brain provides a differential description based on cell type, offers candidate genes for further investigation, and contributes to our understanding of neuron-glia communication in olfactory signaling. Additionally, similarities between the molecular signatures of peripheral glia in Drosophila and vertebrates highlight the utility of model organisms in elucidating glial cell functions in complex systems.
Collapse
Affiliation(s)
- Ana Castañeda-Sampedro
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain
| | - Esther Alcorta
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain.
| | - Carolina Gomez-Diaz
- Departamento de Biología Funcional (Área de Genética), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, c/Julián Clavería s/n, 33006, Oviedo, Asturias, Spain.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Facultad de Medicina y Ciencias de la Salud, Universidad de Oviedo, Asturias, Spain.
| |
Collapse
|
2
|
Shweta, Sharma K, Shakarad M, Agrawal N, Maurya SK. Drosophila glial system: an approach towards understanding molecular complexity of neurodegenerative diseases. Mol Biol Rep 2024; 51:1146. [PMID: 39532789 DOI: 10.1007/s11033-024-10075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Glia is pivotal in regulating neuronal stem cell proliferation, functioning, and nervous system homeostasis, significantly influencing neuronal health and disorders. Dysfunction in glial activity is a key factor in the development and progression of brain pathology. However, a deeper understanding of the intricate nature of glial cells and their diverse role in neurological disorders is still required. To this end, we conducted data mining to retrieve literature from PubMed and Google Scholar using the keywords: glia, Drosophila, neurodegeneration, and mammals. The retrieved literature was manually screened and used to comprehensively understand and present the different glial types in Drosophila, i.e., perineurial, subperineurial, cortex, astrocyte-like and ensheathing glia, their relevance with mammalian counterparts, mainly microglia and astrocytes, and their potential to reveal complex neuron-glial molecular networks in managing neurodegenerative processes.
Collapse
Affiliation(s)
- Shweta
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Khushboo Sharma
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallikarjun Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Namita Agrawal
- Fly Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Prelic S, Keesey IW, Lavista-Llanos S, Hansson BS, Wicher D. Innexin expression and localization in the Drosophila antenna indicate gap junction or hemichannel involvement in antennal chemosensory sensilla. Cell Tissue Res 2024; 398:35-62. [PMID: 39174822 PMCID: PMC11424723 DOI: 10.1007/s00441-024-03909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Odor detection in insects is largely mediated by structures on antennae called sensilla, which feature a strongly conserved architecture and repertoire of olfactory sensory neurons (OSNs) and various support cell types. In Drosophila, OSNs are tightly apposed to supporting cells, whose connection with neurons and functional roles in odor detection remain unclear. Coupling mechanisms between these neuronal and non-neuronal cell types have been suggested based on morphological observations, concomitant physiological activity during odor stimulation, and known interactions that occur in other chemosensory systems. For instance, it is not known whether cell-cell coupling via gap junctions between OSNs and neighboring cells exists, or whether hemichannels interconnect cellular and extracellular sensillum compartments. Here, we show that innexins, which form hemichannels and gap junctions in invertebrates, are abundantly expressed in adult drosophilid antennae. By surveying antennal transcriptomes and performing various immunohistochemical stainings in antennal tissues, we discover innexin-specific patterns of expression and localization, with a majority of innexins strongly localizing to glial and non-neuronal cells, likely support and epithelial cells. Finally, by injecting gap junction-permeable dye into a pre-identified sensillum, we observe no dye coupling between neuronal and non-neuronal cells. Together with evidence of non-neuronal innexin localization, we conclude that innexins likely do not conjoin neurons to support cells, but that junctions and hemichannels may instead couple support cells among each other or to their shared sensillum lymph to achieve synchronous activity. We discuss how coupling of sensillum microenvironments or compartments may potentially contribute to facilitate chemosensory functions of odor sensing and sensillum homeostasis.
Collapse
Affiliation(s)
- Sinisa Prelic
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian W Keesey
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sofia Lavista-Llanos
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S Hansson
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Dept. Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
4
|
Park K, Choi H, Han IJ, Asefa WR, Jeong C, Yu S, Jeong H, Choi M, Yoon SE, Kim YJ, Choi MS, Kwon JY. Molecular and cellular organization of odorant binding protein genes in Drosophila. Heliyon 2024; 10:e29358. [PMID: 38694054 PMCID: PMC11058302 DOI: 10.1016/j.heliyon.2024.e29358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
Chemosensation is important for the survival and reproduction of animals. The odorant binding proteins (OBPs) are thought to be involved in chemosensation together with chemosensory receptors. While OBPs were initially considered to deliver hydrophobic odorants to olfactory receptors in the aqueous lymph solution, recent studies suggest more complex roles in various organs. Here, we use GAL4 transgenes to systematically analyze the expression patterns of all 52 members of the Obp gene family and 3 related chemosensory protein genes in adult Drosophila, focusing on chemosensory organs such as the antenna, maxillary palp, pharynx, and labellum, and other organs such as the brain, ventral nerve cord, leg, wing, and intestine. The OBPs were observed to express in diverse organs and in multiple cell types, suggesting that these proteins can indeed carry out diverse functional roles. Also, we constructed 10 labellar-expressing Obp mutants, and obtained behavioral evidence that these OBPs may be involved in bitter sensing. The resources we constructed should be useful for future Drosophila OBP gene family research.
Collapse
Affiliation(s)
- Keehyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyungjun Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - I Joon Han
- Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Wayessa Rahel Asefa
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chaiyoung Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seungyun Yu
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hanhee Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minkook Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju, 61005, Republic of Korea
| | - Young-Joon Kim
- Korea Drosophila Resource Center, Gwangju, 61005, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Min Sung Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Xi Y, Yu M, Li X, Zeng X, Li J. The coming future: The role of the oral-microbiota-brain axis in aroma release and perception. Compr Rev Food Sci Food Saf 2024; 23:e13303. [PMID: 38343293 DOI: 10.1111/1541-4337.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
The field of aroma release and perception during the oral process has been well studied. However, the traditional approaches have not fully explored the integration of oral biology, microbiology, and neurology to further understand aroma release and perception mechanisms. Herein, to address the existing challenges in this field, we introduce the oral-microbiota-brain axis (OMBA), an innovative framework that encapsulates the interactive relationships among saliva and the oral mucosa, the oral microbiota, and the brain in aroma release and perception. This review introduces the OMBA and highlights its role as a key interface facilitating the sensory experience of aroma. Based on a comprehensive literature survey, the specific roles of the oral mucosa, oral microbiota, saliva, and brain in the OMBA are discussed. This integrated approach reveals the importance of each component and the interconnected relationships within this axis in the overall process of aroma release and perception. Saliva and the oral mucosa play fundamental roles in aroma release and perception; the oral microbiota regulates aroma release and impacts olfactory perception; and the brain's intricate neural circuitry is central to the decoding and interpretation of aroma signals. The components of this axis are interdependent, and imbalances can disrupt aroma perception. The OMBA framework not only enhances our comprehension of aroma release and perception but also paves the way for innovative applications that could heighten sensory experiences.
Collapse
Affiliation(s)
- Yu Xi
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Meihong Yu
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xuejie Li
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiangquan Zeng
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Jian Li
- Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Zhou Y, Deng D, Chen R, Lai C, Chen Q. Effects of antennal segments defects on blood-sucking behavior in Aedes albopictus. PLoS One 2023; 18:e0276036. [PMID: 37561778 PMCID: PMC10414602 DOI: 10.1371/journal.pone.0276036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
After mating, female mosquitoes need a blood meal to promote the reproductive process. When mosquitoes bite infected people and animals, they become infected with germs such as viruses and parasites. Mosquitoes rely on many cues for host selection and localization, among which the trace chemical cues emitted by the host into the environment are considered to be the most important, and the sense of smell is the main way to perceive these trace chemical cues. However, the current understanding of the olfactory mechanism is not enough to meet the needs of mosquito control. Unlike previous studies that focused on the olfactory receptor recognition spectrum to reveal the olfactory mechanism of mosquito host localization. In this paper, based on the observation that mosquitoes with incomplete antennae still can locate the host and complete blood feeding in the laboratory, we proposed that there may be some protection or compensation mechanism in the 13 segments of antennae flagella, and only when the antennae are missing to a certain threshold will it affect the mosquito's ability to locate the host. Through rational-designed behavioral experiments, we found that the 6th and 7th flagellomeres on the Aedes albopictus antenna are important in the olfactory detection of host searching. This study preliminarily screened antennal segments important for host localization of Ae. albopictus, and provided a reference for subsequent cell biology and molecular biology studies on these segments. Meanwhile, the morphology and distribution of sensilla on each antenna flagellomere were also analyzed and discussed in this paper.
Collapse
Affiliation(s)
- Yiyuan Zhou
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongyang Deng
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Rong Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chencen Lai
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
- Department of Nosocomial Infection, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
7
|
Prelic S, Getahun MN, Kaltofen S, Hansson BS, Wicher D. Modulation of the NO-cGMP pathway has no effect on olfactory responses in the Drosophila antenna. Front Cell Neurosci 2023; 17:1180798. [PMID: 37305438 PMCID: PMC10248080 DOI: 10.3389/fncel.2023.1180798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Olfaction is a crucial sensory modality in insects and is underpinned by odor-sensitive sensory neurons expressing odorant receptors that function in the dendrites as odorant-gated ion channels. Along with expression, trafficking, and receptor complexing, the regulation of odorant receptor function is paramount to ensure the extraordinary sensory abilities of insects. However, the full extent of regulation of sensory neuron activity remains to be elucidated. For instance, our understanding of the intracellular effectors that mediate signaling pathways within antennal cells is incomplete within the context of olfaction in vivo. Here, with the use of optical and electrophysiological techniques in live antennal tissue, we investigate whether nitric oxide signaling occurs in the sensory periphery of Drosophila. To answer this, we first query antennal transcriptomic datasets to demonstrate the presence of nitric oxide signaling machinery in antennal tissue. Next, by applying various modulators of the NO-cGMP pathway in open antennal preparations, we show that olfactory responses are unaffected by a wide panel of NO-cGMP pathway inhibitors and activators over short and long timescales. We further examine the action of cAMP and cGMP, cyclic nucleotides previously linked to olfactory processes as intracellular potentiators of receptor functioning, and find that both long-term and short-term applications or microinjections of cGMP have no effect on olfactory responses in vivo as measured by calcium imaging and single sensillum recording. The absence of the effect of cGMP is shown in contrast to cAMP, which elicits increased responses when perfused shortly before olfactory responses in OSNs. Taken together, the apparent absence of nitric oxide signaling in olfactory neurons indicates that this gaseous messenger may play no role as a regulator of olfactory transduction in insects, though may play other physiological roles at the sensory periphery of the antenna.
Collapse
Affiliation(s)
- Sinisa Prelic
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Merid N. Getahun
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Sabine Kaltofen
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|