2
|
Huang Y, Tang H, Meng X, Liu D, Liu Y, Chen B, Zou Z. γ-Cyclodextrin metal-organic frameworks as the promising carrier for pulmonary delivery of cyclosporine A. Biomed Pharmacother 2024; 171:116174. [PMID: 38237346 DOI: 10.1016/j.biopha.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024] Open
Abstract
γ-Cyclodextrin metal-organic frameworks (CD-MOFs) are considered as a green and biocompatible material with great potential in drug delivery systems. Original CD-MOFs show the poor aerosol properties, which limit the application in pulmonary drug delivery. To improve the in vitro deposition properties, herein, we synthesized CD-MOFs by the vapor diffusion method using a series of modulators to achieve better pulmonary delivery of cyclosporine A (CsA). The results showed that blank CD-MOFs and drug loaded CD-MOFs prepared with different modulators all preserved the cubical shape, and exhibited the similar crystal form, structural characteristics, thermal behaviors and release properties. In addition, drug loaded CD-MOFs prepared with polyethylene glycol 10000 (PEG 10000) as a modulator exhibited better in vitro aerosol performance than those of synthesized using other modulators, and the in vivo pharmacokinetics data demonstrated that the bioavailability of CsA could be significantly enhanced by inhalation administration of drug loaded CD-MOFs compared with oral administration of Neoral®. The repeated dose inhalation toxicity also confirmed the fine biocompatibility of CD-MOFs as the carrier for pulmonary drug delivery. Therefore, the results demonstrated CD-MOFs as the promising carrier could be used for pulmonary drug delivery.
Collapse
Affiliation(s)
- Yongpeng Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Tang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiangyan Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Zhiyun Zou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
3
|
Li W, Gan Y, Li Y, Li S, Liang J, Fan W, Yu Z, Li Y, Ding Y, Xiao Z, Zhou J. Enhancing propellant performance through intermolecular interactions: cyclodextrin-based MOF loading in nitrocellulose. Phys Chem Chem Phys 2023; 25:29201-29210. [PMID: 37872864 DOI: 10.1039/d3cp03849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Metal-organic frameworks (MOFs) offer promising opportunities for modifying energetic materials due to their micro-porous structure and high performance. In this study, we present a novel green MOF named cyclodextrin-MOF (CD-MOF), which incorporates potassium ions, synthesized using a simple methanol vapor diffusion approach. The CD-MOF incorporates potassium ions and enhances propellant performance through intermolecular force optimization with nitrocellulose (NC). Molecular dynamics simulations reveal stronger interactions between the CD-MOF and NC. The loading of the CD-MOF within NC forms a stable structure with resistance to migration and defense against crystalline precipitation and water absorption. Notably, in static combustion and pyrolysis tests, the CD-MOF exhibits efficient flame and flash inhibition. The thermal degradation and cauterization of the CD-MOF resulted in the formation of a complex microporous material capable of absorbing flammable and harmful gases such as CO, NO, NO2, and N2O. These findings shed light on the superior performance of the CD-MOF compared to conventional inorganic salts, and the comprehensive characterization and molecular simulations provide insights into the unique properties and applications of the CD-MOF, emphasizing its significant contribution to the field of green propellants.
Collapse
Affiliation(s)
- Wenjia Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanqi Gan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yu Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shiying Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinghao Liang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenhao Fan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zichun Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yichang Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yajun Ding
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhongliang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Zhou
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Key Laboratory of Special Energy Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Zhao RN, Zhu BW, Xu Y, Yu SF, Wang WJ, Liu DH, Hu JN. Cyclodextrin-based metal-organic framework materials: Classifications, synthesis strategies and applications in variegated delivery systems. Carbohydr Polym 2023; 319:121198. [PMID: 37567724 DOI: 10.1016/j.carbpol.2023.121198] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Metal-organic frameworks (MOFs) are coordination compounds that possess an adjustable structure and controllable function. Despite their wide applications in various industries, the use of MOFs in the fields of food and biomedicine is limited mainly due to their potential biological toxicity. Researchers have thus focused on developing biocompatible MOFs to address this issue. Among them, cyclodextrin-based metal-organic frameworks (CD-MOFs) have emerged as a promising alternative. CD-MOFs are novel MOFs synthesized using naturally carbohydrate cyclodextrin and alkali metal cations, and possess renewable, non-toxic, and edible characteristics. Due to their high specific surface area, controllable porosity, great biocompatibility, CD-MOFs have been widely used in various delivery systems, such as encapsulation of nutraceuticals, flavors, and antibacterial agents. Although the field of CD-MOF materials is still in its early stages, they provide a promising direction for the development of MOF materials in the delivery field. This review describes classification and structural characteristics, followed by an introduction to formation mechanism and commonly used synthetic methods for CD-MOFs. Additionally, we discuss the status of the application of various delivery systems based on CD-MOFs. Finally, we address the challenges and prospects of CD-MOF materials, with the aim of providing new insights and ideas for their future development.
Collapse
Affiliation(s)
- Ru-Nan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Bei-Wei Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Song-Feng Yu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Wen-Jun Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Dong-Hong Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, Zhejiang, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|