1
|
Yang Z, Luo F, Song C, Ma Z, Tian Y, Fu Y, Zheng H, Tao J. Elevated Lipid Concentrations in Seminal Plasma Can Reduce Sperm Motility in Simmental Bulls. Animals (Basel) 2025; 15:276. [PMID: 39858276 PMCID: PMC11762868 DOI: 10.3390/ani15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Sperm motility is a key factor influencing male fertility and is associated with metabolic and lipid profiles across species. The aim of this study was to investigate the relationship between sperm motility and the seminal plasma lipid profile in Simmental bulls, and to identify key lipids potentially influencing sperm motility. Semen samples were collected from 26 healthy Simmental bulls with an average age of 4.9 years. Sperm quality was evaluated using computer-assisted sperm analysis (CASA). Based on motility, the samples were divided into two groups: high sperm motility (HSM > 65%) and low sperm motility (LSM < 65%). Compared to the LSM group, the HSM group exhibited significantly higher sperm viability, motility, straight-line velocity, beat-cross frequency, and sperm acrosome integrity, while the sperm malformation rate was lower (p < 0.05). Lipid profiles were determined using LC-MS/MS, and 40 differential lipids were identified by multivariate statistical analysis. Among them, 39 lipids were upregulated in the LSM group compared to the HSM group. They were primarily triglycerides and carnitines, mainly involved in four metabolic pathways related to glycerophospholipid and linoleic acid metabolism. Notably, PC (16:0/20:4; 14:0/18:3), LPC (22:4/0:0; 22:6/0:0), and PE (14:0/18:1; 18:1/20:3) were diagnosed with great accuracy (AUC > 0.7), which means they may serve as potential biomarkers for sperm motility.
Collapse
Affiliation(s)
- Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Z.Y.); (F.L.); (C.S.); (Y.F.); (H.Z.)
| | - Fang Luo
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Z.Y.); (F.L.); (C.S.); (Y.F.); (H.Z.)
| | - Chenglei Song
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Z.Y.); (F.L.); (C.S.); (Y.F.); (H.Z.)
| | - Zhiyuan Ma
- Station of Domestic Animal Improving and Management of Gansu Province, Wuwei 733000, China;
| | - Yucheng Tian
- Ningxia Breeding Cow Biotechnology Co., Ltd., Zhongwei 751800, China;
| | - Yu Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Z.Y.); (F.L.); (C.S.); (Y.F.); (H.Z.)
| | - Hao Zheng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Z.Y.); (F.L.); (C.S.); (Y.F.); (H.Z.)
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (Z.Y.); (F.L.); (C.S.); (Y.F.); (H.Z.)
| |
Collapse
|
2
|
Yang L, Shi J, Zhong M, Sun P, Zhang X, Lian Z, Yin H, Xu L, He G, Xu H, Wu H, Wang Z, Miao K, Huang J. NXPH4 mediated by m 5C contributes to the malignant characteristics of colorectal cancer via inhibiting HIF1A degradation. Cell Mol Biol Lett 2024; 29:111. [PMID: 39164641 PMCID: PMC11334498 DOI: 10.1186/s11658-024-00630-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is a form of malignancy that exhibits a comparatively elevated occurrence and fatality rate. Given the relatively slower progress in diagnostic and therapeutic approaches for CRC, there is a need to investigate more accurate and efficient biomarkers. METHODS Core regulatory genes were screened using the TCGA database, and the expression of neurexophilin 4 (NXPH4) and its prognostic implications were validated using tissue microarray staining. The assessment of NXPH4 functions involved a range of experiments, including cellular, organoid, and murine models. Furthermore, a regulatory network between m5C, NXPH4, and HIF1A was established through several in vitro experiments. RESULTS The overexpression of NXPH4 is associated with unfavorable prognoses in patients with CRC and hepatocellular carcinoma. Additionally, it facilitates the progression of malignant tumors both in laboratory settings and in living organisms of colorectal carcinoma. Our research also reveals that NXPH4 mRNA can avoid degradation through RNautophagy, relying on an m5C-dependent mechanism. Moreover, NXPH4 amplifies the HIF signaling pathway and stabilizes HIF1A by competitively binding to PHD4. CONCLUSIONS NXPH4, regulated by m5C, promotes malignant tumor progression and regulates the HIF pathway. Consequently, targeting NXPH4 through molecular therapies could potentially serve as an efficacious therapeutic strategy for the management of CRC exhibiting elevated NXPH4 expression.
Collapse
Affiliation(s)
- Lei Yang
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiawen Shi
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Mingyang Zhong
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Pingping Sun
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaojing Zhang
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhengyi Lian
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hang Yin
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lijun Xu
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Guyin He
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Haiyan Xu
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Han Wu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ziheng Wang
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Kai Miao
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China.
| | - Jianfei Huang
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University, Department of Oncology, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Lu J, Zhang M, Liu Z, Guo L, Huang P, Xia W, Li J, Lv J, Cheung HH, Ding C, Li H, Huang B. NSUN2-Mediated m 5C Methylation Impairs Endometrial Receptivity. J Transl Med 2024; 104:100327. [PMID: 38237738 DOI: 10.1016/j.labinv.2024.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 02/12/2024] Open
Abstract
Impaired endometrial decidualization is the primary cause of recurrent implantation failure (RIF). RNA methylation modification, especially NSUN family mediated m5C, is crucial for various physiological events, such as maternal-to-zygotic transition, gametogenesis, embryonic development, organismal lifespan, and cell cycle. However, the regulatory mechanisms between NSUN family mediated m5C modification and RIF remain unknown. We acquired NSUN2 expression data of 15 human endometrium samples at proliferative and secretory stages from reproductive cell atlas. The overall pattern of m5C sites and genes was elucidated through m5C-BS-seq, whereas the overall m5C levels in different groups were revealed by dot blot assay. BrdU and western blotting assays were carried out to evaluate the role of NSUN2 in proliferation and autophagy. The effects of NSUN2-mediated m5C modification on embryo attachment were evaluated by an in vitro model of a confluent monolayer of Ishikawa cells cocultured with BeWo spheroids, and its downstream targets were evaluated by real-time reverse-transcription PCR and western blotting in Ishikawa cells. The molecular mechanism for NSUN2 regulating its downstream targets' expression was determined by Cut&Tag and coimmunoprecipitation assays. NSUN2 was increased in SOX9+ cells and widespread in epithelial cell type at the proliferative stage by previous single-cell RNA sequencing data. NSUN2 overexpression (NSUN2OE) in the Ishikawa cell line elevated m5C levels and promoted cell proliferation and autophagy. NSUN2OE reduced attachment efficiency of BeWo cell spheres. Overexpressed NSUN2 was found to increase STAT1 and MMP14 mRNA expressions by inducing exon skipping. NSUN2 interacted with CLDN4 through m5C modification, and NSUN2OE or NSUN2 knockdown resulted in a similar variation tendency of CLDN4. Overexpression of NSUN2 increased CLDN4 H3K9ac modification by downregulating SIRT4 expression at the protein level, leading to the upregulation of CLDN4 mRNA expression. Our results uncovered a novel intricate regulatory mechanism between NSUN2-mediated m5C and RIF and suggested a potential new therapeutic strategy for RIF.
Collapse
Affiliation(s)
- Jiafeng Lu
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ming Zhang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhenxing Liu
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ling Guo
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Peng Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jincheng Li
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jinghuan Lv
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hoi-Hung Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR
| | - Chenyue Ding
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Hong Li
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
4
|
Mapel XM, Kadri NK, Leonard AS, He Q, Lloret-Villas A, Bhati M, Hiltpold M, Pausch H. Molecular quantitative trait loci in reproductive tissues impact male fertility in cattle. Nat Commun 2024; 15:674. [PMID: 38253538 PMCID: PMC10803364 DOI: 10.1038/s41467-024-44935-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Breeding bulls are well suited to investigate inherited variation in male fertility because they are genotyped and their reproductive success is monitored through semen analyses and thousands of artificial inseminations. However, functional data from relevant tissues are lacking in cattle, which prevents fine-mapping fertility-associated genomic regions. Here, we characterize gene expression and splicing variation in testis, epididymis, and vas deferens transcriptomes of 118 mature bulls and conduct association tests between 414,667 molecular phenotypes and 21,501,032 genome-wide variants to identify 41,156 regulatory loci. We show broad consensus in tissue-specific and tissue-enriched gene expression between the three bovine tissues and their human and murine counterparts. Expression- and splicing-mediating variants are more than three times as frequent in testis than epididymis and vas deferens, highlighting the transcriptional complexity of testis. Finally, we identify genes (WDR19, SPATA16, KCTD19, ZDHHC1) and molecular phenotypes that are associated with quantitative variation in male fertility through transcriptome-wide association and colocalization analyses.
Collapse
Affiliation(s)
- Xena Marie Mapel
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
| | - Naveen Kumar Kadri
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
| | - Alexander S Leonard
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
| | - Qiongyu He
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
| | | | - Meenu Bhati
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
- Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Maya Hiltpold
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, Universitatstrasse 2, 8092, Zurich, Switzerland.
| |
Collapse
|
5
|
Kertz NC, Banerjee P, Dyce PW, Diniz WJS. Harnessing Genomics and Transcriptomics Approaches to Improve Female Fertility in Beef Cattle-A Review. Animals (Basel) 2023; 13:3284. [PMID: 37894009 PMCID: PMC10603720 DOI: 10.3390/ani13203284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Female fertility is the foundation of the cow-calf industry, impacting both efficiency and profitability. Reproductive failure is the primary reason why beef cows are sold in the U.S. and the cause of an estimated annual gross loss of USD 2.8 billion. In this review, we discuss the status of the genomics, transcriptomics, and systems genomics approaches currently applied to female fertility and the tools available to cow-calf producers to maximize genetic progress. We highlight the opportunities and limitations associated with using genomic and transcriptomic approaches to discover genes and regulatory mechanisms related to beef fertility. Considering the complex nature of fertility, significant advances in precision breeding will rely on holistic, multidisciplinary approaches to further advance our ability to understand, predict, and improve reproductive performance. While these technologies have advanced our knowledge, the next step is to translate research findings from bench to on-farm applications.
Collapse
|
6
|
Peng L, Zhang X, Du Y, Li F, Han J, Liu O, Dai S, Zhang X, Liu GE, Yang L, Zhou Y. New insights into transcriptome variation during cattle adipocyte adipogenesis by direct RNA sequencing. iScience 2023; 26:107753. [PMID: 37692285 PMCID: PMC10492216 DOI: 10.1016/j.isci.2023.107753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/31/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
We performed direct RNA sequencing (DRS) together with PCR-amplified cDNA long and short read sequencing for cattle adipocyte at different stages. We proved that the DRS was with advantages to avoid artificial transcripts and questionable exitrons. Totally, we obtained 68,124 transcripts with information of alternative splicing, poly (A) length and mRNA modification. The number of transcripts for adipogenesis was expanded by alternative splicing, which lead regulation mechanisms far more complex than ever known. We detected 891 differentially expressed genes (DEGs). However, 62.78% transcripts of DEGs were not significantly differentially expressed, and 248 transcripts showed opposite changing directions with their genes. The poly (A) tail became globally shorter in differentiated adipocyte than in primary adipocyte, and had a weak negative correlation with gene/transcript expression. Moreover, the study of different mRNA modifications implied their potential roles in gene expression and alternative splicing. Overall, our study promoted better understanding of adipogenesis mechanisms in cattle adipocytes.
Collapse
Affiliation(s)
- Lingwei Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqin Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiazheng Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Oujin Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoulu Dai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD 20705, USA
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|