1
|
Li X, Zhao X, Li Y, Li X, Kong X, Wei Q, Guo M. Microelectricity enhances aerobic granular sludge granulation and sulfamethazine degradation: Performance, mechanism, antibiotic resistance genes and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123889. [PMID: 39731957 DOI: 10.1016/j.jenvman.2024.123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/25/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
With the widespread use of typical antibiotics such as sulfamethazine (SMT), it leads to their accumulation in the environment, increasing the risk of the spread of antibiotic resistance genes (ARGs). Aerobic granular sludge (AGS) has shown great potential in treating antibiotic wastewater. However, the long cultivation period of AGS, the easy disintegration of particles and the poor stability of degradation efficiency for highly concentrated antibiotic wastewater are still urgent problems that need to be solved, and it is important to explore the migration and changes of ARGs and microbial diversity in AGS systems. In this study, a microelectrically enhanced pelletizing reactor (MEPR) was innovatively constructed using a microbial electrolysis cell (MEC) coupled with an AGS system, and a comparative study was carried out using a conventional sequential batch reactor (SBR). The results showed that the AGS obtained from MEPR culture was smooth white spherical, with rich internal microbial phase and good sludge activity. The microelectric condition shortened the AGS culture cycle by 10 days, with smaller AGS particle size, denser structure, and better pollutant degradation ability, and the average removal rate of SMT by MEPR (74.3 %) was much higher than that of SBR (3.13 %). The microelectrical properties reduced the sludge pressure to a certain extent, induced the reasonable secretion of extracellular polymeric substances (EPS), and kept the MEPR in a strong stable state. High-throughput sequencing and detection of ARGs indicated that MEPR had a richer microbial community structure, which significantly controlled the enrichment of ARGs. This study provides a theoretical reference for enhanced sludge granulation and biological treatment of high concentration antibiotic wastewater.
Collapse
Affiliation(s)
- Xinyi Li
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Xia Zhao
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Yabin Li
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.
| | - Xiran Li
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Xiuqin Kong
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Qian Wei
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Menghan Guo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| |
Collapse
|
2
|
Li Y, Yang B, Kong Y, Tao Y, Zhao Z, Li Y, Zhang Y. Correlation between intracellular electron transfer and gene expression for electrically conductive pili in electroactive bacteria during anaerobic digestion with ethanol. WATER RESEARCH 2024; 265:122307. [PMID: 39180955 DOI: 10.1016/j.watres.2024.122307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Ethanol feeding has been widely documented as an economical and effective strategy for establishing direct interspecies electron transfer (DIET) during anaerobic digestion. However, the mechanisms involved are still unclear, especially on correlation between intracellular electron transfer in electroactive bacteria and their gene expression for electrically conductive pili (e-pili), the most essential electrical connection component for DIET. Upon cooling from room temperature, the conductivity of digester aggregates with ethanol exponentially increased by an order of magnitude (from 45.5 to 125.4 μS/cm), whereas which with its metabolites (acetaldehyde [from 40.5 to 54.4 μS/cm] or acetate [from 32.1 to 50.4 μS/cm]) did not increase significantly. In addition, the digester aggregates only with ethanol were observed with a strong dependence of conductivity on pH. Metagenomic and metatranscriptomic analysis showed that Desulfovibrio desulfuricans was the most dominant and metabolically active bacterium that contained and highly expressed the genes for e-pili. Abundance of genes encoding the total type IV pilus assembly proteins (6.72E-04 vs 1.24E-03, P < 0.05), PilA that determined the conductive properties (2.22E-04 vs 2.44E-04, P > 0.05), and PilB that proceeded the polymerization of pilin (1.56E-04 vs 3.52E-03, P < 0.05) with ethanol was lower than that with acetaldehyde. However, transcript abundance of these genes with ethanol was generally higher than that with acetaldehyde. In comparison to acetaldehyde, ethanol increased the transcript abundance of genes encoding the key enzymes involved in NADH/NAD+ transformation on complex I and ATP synthesis on complex V in intracellular electron transport chain. The improvement of intracellular electron transfer in D. desulfuricans suggested that electrons were intracellularly energized with high energy to activate e-pili during DIET.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaohui Kong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Tao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yang Li
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
3
|
Li Y, Qiao S, Guo M, Zhang L, Liu G, Zhou J. Biological Self-Assembled Transmembrane Electron Conduits for High-Efficiency Ammonia Production in Microbial Electrosynthesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7457-7468. [PMID: 38642050 DOI: 10.1021/acs.est.3c10897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Usually, CymA is irreplaceable as the electron transport hub in Shewanella oneidensis MR-1 bidirectional electron transfer. In this work, biologically self-assembled FeS nanoparticles construct an artificial electron transfer route and implement electron transfer from extracellular into periplasmic space without CymA involvement, which present similar properties to type IV pili. Bacteria are wired up into a network, and more electron transfer conduits are activated by self-assembled transmembrane FeS nanoparticles (electron conduits), thereby substantially enhancing the ammonia production. In this study, we achieved an average NH4+-N production rate of 391.8 μg·h-1·L reactor-1 with the selectivity of 98.0% and cathode efficiency of 65.4%. Additionally, the amide group in the protein-like substances located in the outer membrane was first found to be able to transfer electrons from extracellular into intracellular with c-type cytochromes. Our work provides a new viewpoint that contributes to a better understanding of the interconnections between semiconductor materials and bacteria and inspires the exploration of new electron transfer chain components.
Collapse
Affiliation(s)
- Yao Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Meiwei Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Liying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, P.R. China
| |
Collapse
|