1
|
Merivee E, Mürk A, Nurme K, Koppel M, Mänd M. Automated video-tracking analysis of Agriotes obscurus wireworm behaviour before, during and after contact with thiamethoxam- and imidacloprid-treated wheat seeds. Sci Rep 2025; 15:7218. [PMID: 40021755 PMCID: PMC11871367 DOI: 10.1038/s41598-025-91175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Limited studies have highlighted the importance of incorporating behavioural assessments into insecticide efficacy evaluations for wireworm pest control. "For this study, video tracking technology combined with a soil bioassay arena was employed to analyse the behaviour of Agriotes obscurus wireworms before, during, and after exposure to wheat seeds treated with the neonicotinoid insecticides thiamethoxam and imidacloprid at field-relevant concentrations. The analysis identified a set of behavioural key metrics for assessing the effects of these insecticides on wireworms. The results showed that these insecticides exhibited neutral attractancy towards wireworms. A brief period of feeding followed by rapid intoxication minimised damage to seeds. Furthermore, the wireworms demonstrated a specific form of behavioural resistance to neonicotinoids that did not rely on sensory input. In these insects, the rapid speed of intoxication, accompanied by drastic changes in behaviour, ensured that they received a sublethal rather than lethal dose of the insecticide. The wireworms fully recovered from all behavioural abnormalities within a week, and none died within 20 days following the exposure. In conclusion, this video tracking method provides a rapid and efficient means of assessing insecticides intended for wireworm management, offering valuable insights prior to more resource-intensive and costly field trials.
Collapse
Affiliation(s)
- Enno Merivee
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Anne Mürk
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
| | - Karin Nurme
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mati Koppel
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
2
|
Wizenberg SB, French SK, Newburn LR, Pepinelli M, Conflitti IM, Moubony M, Ritchie C, Jamieson A, Richardson RT, Travas A, Imrit MA, Chihata M, Higo H, Common J, Walsh EM, Bixby M, Guarna MM, Pernal SF, Hoover SE, Currie RW, Giovenazzo P, Guzman-Novoa E, Borges D, Foster LJ, Zayed A. Pollen foraging mediates exposure to dichotomous stressor syndromes in honey bees. PNAS NEXUS 2024; 3:pgae440. [PMID: 39434869 PMCID: PMC11491753 DOI: 10.1093/pnasnexus/pgae440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024]
Abstract
Recent declines in the health of honey bee colonies used for crop pollination pose a considerable threat to global food security. Foraging by honey bee workers represents the primary route of exposure to a plethora of toxins and pathogens known to affect bee health, but it remains unclear how foraging preferences impact colony-level patterns of stressor exposure. Resolving this knowledge gap is crucial for enhancing the health of honey bees and the agricultural systems that rely on them for pollination. To address this, we carried out a national-scale experiment encompassing 456 Canadian honey bee colonies to first characterize pollen foraging preferences in relation to major crops and then explore how foraging behavior influences patterns of stressor exposure. We used a metagenetic approach to quantify honey bee dietary breadth and found that bees display distinct foraging preferences that vary substantially relative to crop type and proximity, and the breadth of foraging interactions can be used to predict the abundance and diversity of stressors a colony is exposed to. Foraging on diverse plant communities was associated with increased exposure to pathogens, while the opposite was associated with increased exposure to xenobiotics. Our work provides the first large-scale empirical evidence that pollen foraging behavior plays an influential role in determining exposure to dichotomous stressor syndromes in honey bees.
Collapse
Affiliation(s)
| | - Sarah K French
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Laura R Newburn
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Mateus Pepinelli
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Ida M Conflitti
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Mashaba Moubony
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Caroline Ritchie
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Aidan Jamieson
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | | - Anthea Travas
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | | | - Matthew Chihata
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - Heather Higo
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Julia Common
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Elizabeth M Walsh
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada T0H 0C0
| | - Miriam Bixby
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - M Marta Guarna
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada T0H 0C0
- Department of Computer Science, University of Victoria, Victoria, BC, Canada V8P 5C2
| | - Stephen F Pernal
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada T0H 0C0
| | - Shelley E Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| | - Robert W Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Pierre Giovenazzo
- Département de Biologie, Université Laval, Ville de Québec, QC, Canada G1V 0A6
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Daniel Borges
- Ontario Beekeepers’ Association, Technology Transfer Program, Guelph, ON, Canada N1H 6J2
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| |
Collapse
|
3
|
Chen X, Li A, Yin L, Ke L, Dai P, Liu YJ. Early-Life Sublethal Thiacloprid Exposure to Honey Bee Larvae: Enduring Effects on Adult Bee Cognitive Abilities. TOXICS 2023; 12:18. [PMID: 38250974 PMCID: PMC10820931 DOI: 10.3390/toxics12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
Honey bees have significant ecological and economic value as important pollinators, but they are continuously exposed to various environmental stressors, including insecticides, which can impair their health and cause colony decline. (1) Background: Cognitive abilities are vital for the functional maintenance of honey bees; however, it remains unknown if chronic, low-dose exposure to thiacloprid during the larval stage impairs the cognitive abilities of emerged adult honey bees. (2) Methods: To explore this question, honey bee larvae were fed 0, 0.5, and 1.0 mg/L thiacloprid during their developmental phase. Then, the cognitive (i.e., olfactory learning and memory) abilities of adult honey bees were quantified to assess the delayed impacts of early-stage thiacloprid exposure on adult honey bee cognition. Neural apoptosis and transcriptomic level were also evaluated to explore the neurological mechanisms underlying these effects. (3) Results: Our results revealed that chronic larval exposure to sublethal thiacloprid impaired the learning and memory abilities of adult honey bees by inducing neuronal apoptosis and transcriptomic alterations. (4) Conclusions: We highlighted a previously unknown impairment caused by thiacloprid in honey bees.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|