1
|
Horner JL, Vu MP, Clark JT, Innis IJ, Cheng C. Canonical ligand-dependent and non-canonical ligand-independent EphA2 signaling in the eye lens of wild-type, knockout, and aging mice. Aging (Albany NY) 2024; 16:13039-13075. [PMID: 39466050 PMCID: PMC11552635 DOI: 10.18632/aging.206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/29/2024] [Indexed: 10/29/2024]
Abstract
Disruption of Eph-ephrin bidirectional signaling leads to human congenital and age-related cataracts, but the mechanisms for these opacities in the eye lens remain unclear. Eph receptors bind to ephrin ligands on neighboring cells to induce canonical ligand-mediated signaling. The EphA2 receptor also signals non-canonically without ligand binding in cancerous cells, leading to epithelial-to-mesenchymal transition (EMT). We have previously shown that the receptor EphA2 and the ligand ephrin-A5 have diverse functions in maintaining lens transparency in mice. Loss of ephrin-A5 leads to anterior cataracts due to EMT. Surprisingly, both canonical and non-canonical EphA2 activation are present in normal wild-type lenses and in the ephrin-A5 knockout lenses. Canonical EphA2 signaling is localized exclusively to lens epithelial cells and does not change with age. Non-canonical EphA2 signaling is in both epithelial and fiber cells and increases significantly with age. We hypothesize that canonical ligand-dependent EphA2 signaling is required for the morphogenesis and organization of hexagonal equatorial epithelial cells while non-canonical ligand-independent EphA2 signaling is needed for complex membrane interdigitations that change during fiber cell differentiation and maturation. This is the first demonstration of non-canonical EphA2 activation in a non-cancerous tissue or cell and suggests a possible physiological function for ligand-independent EphA2 signaling.
Collapse
Affiliation(s)
- Jenna L. Horner
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Michael P. Vu
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Jackson T. Clark
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Isaiah J. Innis
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Du Y, Acosta FM, Zhang J, Tong Y, Quan Y, Gu S, Jiang JX. Protocol for altering connexin hemichannel function in primary chicken lens fiber cells using high-titer retroviral RCAS(A) infection. STAR Protoc 2023; 4:102564. [PMID: 37738121 PMCID: PMC10519848 DOI: 10.1016/j.xpro.2023.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023] Open
Abstract
Connexins (Cxs) play a crucial role in maintaining lens transparency. Here, we present a protocol for altering Cx hemichannel (HC) function in primary chicken lens fiber cells using high-titer retroviral replication competent avian sarcoma-leukosis virus long terminal repeat with splice acceptor (A) infection. We describe steps for incubating eggs, isolating lenses, culturing cells, preparing reagents, and infecting cells. We then detail cell treatment and detection of apoptosis and death. This protocol can assess protein kinase A, HC activity, and increased glutathione transport for protecting lens fiber cells against oxidative stress. For complete details on the use and execution of this protocol, please refer to Liu et al.,1 Riquelme et al.,2 Shi et al.,3 Jiang,4 and Rath et al.5.
Collapse
Affiliation(s)
- Yu Du
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA; Department of Ophthalmology, Lanzhou University Second Hospital; Second Clinical School, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jianping Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
3
|
Li Y, Acosta FM, Jiang JX. Gap Junctions or Hemichannel-Dependent and Independent Roles of Connexins in Fibrosis, Epithelial-Mesenchymal Transitions, and Wound Healing. Biomolecules 2023; 13:1796. [PMID: 38136665 PMCID: PMC10742173 DOI: 10.3390/biom13121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fibrosis initially appears as a normal response to damage, where activated fibroblasts produce large amounts of the extracellular matrix (ECM) during the wound healing process to assist in the repair of injured tissue. However, the excessive accumulation of the ECM, unresolved by remodeling mechanisms, leads to organ dysfunction. Connexins, a family of transmembrane channel proteins, are widely recognized for their major roles in fibrosis, the epithelial-mesenchymal transition (EMT), and wound healing. Efforts have been made in recent years to identify novel mediators and targets for this regulation. Connexins form gap junctions and hemichannels, mediating communications between neighboring cells and inside and outside of cells, respectively. Recent evidence suggests that connexins, beyond forming channels, possess channel-independent functions in fibrosis, the EMT, and wound healing. One crucial channel-independent function is their role as the primary functional component for cell adhesion. Other channel-independent functions of connexins involve their roles in mitochondria and exosomes. This review summarizes the latest advances in the channel-dependent and independent roles of connexins in fibrosis, the EMT, and wound healing, with a particular focus on eye diseases, emphasizing their potential as novel, promising therapeutic targets.
Collapse
Affiliation(s)
- Yuting Li
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
- Department of Pathology, Basic Medical School, Ningxia Medical University, Yinchuan 750004, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.L.); (F.M.A.)
| |
Collapse
|
4
|
Zhang K, Di G, Li B, Ge H, Bai Y, Bian W, Wang D, Chen P. AQP5 deficiency promotes the senescence of lens epithelial cells through mitochondrial dysfunction. Biochem Biophys Res Commun 2023; 680:184-193. [PMID: 37742347 DOI: 10.1016/j.bbrc.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Cataract is lens opacity, which is a common blinding eye disease worldwide. Aquaporin 5 (AQP5) is expressed in the human and mouse lenses. This study aimed to investigate the underlying mechanisms of AQP5 in the senescence of lens epithelial cells (LECs). Primary LECs were isolated and cultured from Aqp5+/+ and Aqp5-/- mice. Western blot or immunofluorescence staining of p16, Ki67, MitoSOX, JC-1 and phalloidin was used in the experiments to evaluate the changes in the primary LECs. The primary Aqp5-/- LECs showed increased p16 expression and mitochondrial reactive oxygen species, decreased mitochondrial membrane potential and activity, and cytoskeletal disorders. When the cells were pretreated with Mito-TEMPO, the Aqp5-/- mice showed decreased p16 expression, reduced mitochondrial dysfunction and cytoskeletal disorders. Our results revealed that AQP5 deficiency promotes the senescence of primary LECs through mitochondrial dysfunction. This provides a new perspective for the treatment of cataracts by regulating AQP5 expression.
Collapse
Affiliation(s)
- Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Bin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Huanhuan Ge
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Wenhan Bian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Dianqiang Wang
- Qingdao Aier Eye Hospital, Qingdao, Shandong Province, 266400, China.
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| |
Collapse
|
5
|
Wimalawansa SJ. Infections and Autoimmunity-The Immune System and Vitamin D: A Systematic Review. Nutrients 2023; 15:3842. [PMID: 37686873 PMCID: PMC10490553 DOI: 10.3390/nu15173842] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Both 25-autoimmunity and(25(OH)D: calcifediol) and its active form, 1,25-dihydroxyvitamin D (1,25(OH)2D: calcitriol), play critical roles in protecting humans from invasive pathogens, reducing risks of autoimmunity, and maintaining health. Conversely, low 25(OH)D status increases susceptibility to infections and developing autoimmunity. This systematic review examines vitamin D's mechanisms and effects on enhancing innate and acquired immunity against microbes and preventing autoimmunity. The study evaluated the quality of evidence regarding biology, physiology, and aspects of human health on vitamin D related to infections and autoimmunity in peer-reviewed journal articles published in English. The search and analyses followed PRISMA guidelines. Data strongly suggested that maintaining serum 25(OH)D concentrations of more than 50 ng/mL is associated with significant risk reduction from viral and bacterial infections, sepsis, and autoimmunity. Most adequately powered, well-designed, randomized controlled trials with sufficient duration supported substantial benefits of vitamin D. Virtually all studies that failed to conclude benefits or were ambiguous had major study design errors. Treatment of vitamin D deficiency costs less than 0.01% of the cost of investigation of worsening comorbidities associated with hypovitaminosis D. Despite cost-benefits, the prevalence of vitamin D deficiency remains high worldwide. This was clear among those who died from COVID-19 in 2020/21-most had severe vitamin D deficiency. Yet, the lack of direction from health agencies and insurance companies on using vitamin D as an adjunct therapy is astonishing. Data confirmed that keeping an individual's serum 25(OH)D concentrations above 50 ng/mL (125 nmol/L) (and above 40 ng/mL in the population) reduces risks from community outbreaks, sepsis, and autoimmune disorders. Maintaining such concentrations in 97.5% of people is achievable through daily safe sun exposure (except in countries far from the equator during winter) or taking between 5000 and 8000 IU vitamin D supplements daily (average dose, for non-obese adults, ~70 to 90 IU/kg body weight). Those with gastrointestinal malabsorption, obesity, or on medications that increase the catabolism of vitamin D and a few other specific disorders require much higher intake. This systematic review evaluates non-classical actions of vitamin D, with particular emphasis on infection and autoimmunity related to the immune system.
Collapse
Affiliation(s)
- Sunil J Wimalawansa
- Medicine, Endocrinology & Nutrition, Cardiometabolic & Endocrine Institute, North Brunswick, NJ 08902, USA
| |
Collapse
|
6
|
Ek-Vitorin JF, Jiang JX. The Role of Gap Junctions Dysfunction in the Development of Cataracts: From Loss of Cell-to-Cell Transfer to Blurred Vision-Review. Bioelectricity 2023; 5:164-172. [PMID: 37746311 PMCID: PMC10516237 DOI: 10.1089/bioe.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Mutations of lens connexins are linked to congenital cataracts. However, the role of connexin mutations in the development of age-related lens opacification remains largely unknown. Here, we present a focused review of the literature on lens organization and factors associated with cataract development. Several lines of evidence indicate that disturbances of the lens circulation by dysfunctional connexin channels, and/or accumulation of protein damage due to oxidative stress, are key factors in cataract development. Phosphorylation by protein kinase A improves the permeability of connexins channels to small molecules and mitigates the lens clouding induced by oxidative stress. We conclude (1) that connexin channels are central to the lens circulation and (2) that their permeability to antioxidant molecules contributes to the maintenance of lens transparency.
Collapse
Affiliation(s)
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|