1
|
Azizan F, Sheriff RS, Goh CJH, Chiam KH, Koh CG. Solid stress compression enhances breast cancer cell migration through the upregulation of Interleukin-6. Front Cell Dev Biol 2025; 13:1541953. [PMID: 40371393 PMCID: PMC12077316 DOI: 10.3389/fcell.2025.1541953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Apart from biochemical signals, tumour cells respond to biophysical and mechanical cues from their environment. The mechanical forces from the tumour microenvironment could be in the form of shear stress, tension, or solid stress compression. In this study, we explore the effects of solid stress compression on tumour cells. Solid stress compression, a prevalent biomechanical stimulus accumulated during tumour growth, has been shown to enhance invasive and metastatic phenotypes in cancer cells. However, the underlying molecular mechanism that elicits this aggressive metastatic phenotype, especially in breast cancer, is not extensively studied. Using an established 2D in vitro setup to apply incremental solid stress compression, we found that migratory and invasive capacities of aggressive breast cancer cells were enhanced in a biphasic manner. We also found that the transcript and protein levels of Interleukin-6 (IL-6) and SNAI1 were upregulated in response to solid stress. The resultant increased secretion of IL-6 could in turn lead to autocrine activation of downstream signalling pathways and impact on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Farouq Azizan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ryna Shireen Sheriff
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Corinna Jie Hui Goh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*Star), Biopolis, Singapore, Singapore
| | - Keng Hwee Chiam
- Bioinformatics Institute, Agency for Science, Technology and Research (A*Star), Biopolis, Singapore, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Shi W, Tanzhu G, Chen L, Ning J, Wang H, Xiao G, Peng H, Jing D, Liang H, Nie J, Yi M, Zhou R. Radiotherapy in Preclinical Models of Brain Metastases: A Review and Recommendations for Future Studies. Int J Biol Sci 2024; 20:765-783. [PMID: 38169621 PMCID: PMC10758094 DOI: 10.7150/ijbs.91295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Brain metastases (BMs) frequently occur in primary tumors such as lung cancer, breast cancer, and melanoma, and are associated with notably short natural survival. In addition to surgical interventions, chemotherapy, targeted therapy, and immunotherapy, radiotherapy (RT) is a crucial treatment for BM and encompasses whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS). Validating the efficacy and safety of treatment regimens through preclinical models is imperative for successful translation to clinical application. This not only advances fundamental research but also forms the theoretical foundation for clinical study. This review, grounded in animal models of brain metastases (AM-BM), explores the theoretical underpinnings and practical applications of radiotherapy in combination with chemotherapy, targeted therapy, immunotherapy, and emerging technologies such as nanomaterials and oxygen-containing microbubbles. Initially, we provided a concise overview of the establishment of AM-BMs. Subsequently, we summarize key RT parameters (RT mode, dose, fraction, dose rate) and their corresponding effects in AM-BMs. Finally, we present a comprehensive analysis of the current research status and future directions for combination therapy based on RT. In summary, there is presently no standardized regimen for AM-BM treatment involving RT. Further research is essential to deepen our understanding of the relationships between various parameters and their respective effects.
Collapse
Affiliation(s)
- Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongji Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huadong Liang
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Jing Nie
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Min Yi
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|