1
|
Uricoechea Patiño D, Collins A, Romero García OJ, Santos Vecino G, Aristizábal Espinosa P, Bernal Villegas JE, Benavides Benitez E, Vergara Muñoz S, Briceño Balcázar I. Unraveling the Genetic Threads of History: mtDNA HVS-I Analysis Reveals the Ancient Past of the Aburra Valley. Genes (Basel) 2023; 14:2036. [PMID: 38002979 PMCID: PMC10670959 DOI: 10.3390/genes14112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
This article presents a comprehensive genetic study focused on pre-Hispanic individuals who inhabited the Aburrá Valley in Antioquia, Colombia, between the tenth and seventeenth centuries AD. Employing a genetic approach, the study analyzed maternal lineages using DNA samples obtained from skeletal remains. The results illuminate a remarkable degree of biological diversity within these populations and provide insights into their genetic connections with other ancient and indigenous groups across the American continent. The findings strongly support the widely accepted hypothesis that the migration of the first American settlers occurred through Beringia, a land bridge connecting Siberia to North America during the last Ice Age. Subsequently, these early settlers journeyed southward, crossing the North American ice cap. Of particular note, the study unveils the presence of ancestral lineages from Asian populations, which played a pivotal role in populating the Americas. The implications of these results extend beyond delineating migratory routes and settlement patterns of ancient populations. They also enrich our understanding of the genetic diversity inherent in indigenous populations of the region. By revealing the genetic heritage of pre-Hispanic individuals from the Aburrá Valley, this study offers valuable insights into the history of human migration and settlement in the Americas. Furthermore, it enhances our comprehension of the intricate genetic tapestry that characterizes indigenous communities in the area.
Collapse
Affiliation(s)
- Daniel Uricoechea Patiño
- Doctoral Program in Biosciences, Human Genetics Group, Faculty of Medicine, University of La Sabana, Chía 250001, Colombia;
| | - Andrew Collins
- Human Genetics & Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | | | - Gustavo Santos Vecino
- Department of Anthropology, Faculty of Social and Human Science, Universidad de Antioquia, Medellín 050010, Colombia;
| | | | | | | | - Saray Vergara Muñoz
- Faculty of Medicine, University of Sinú, Cartagena de Indias 130011, Colombia; (J.E.B.V.); (S.V.M.)
| | - Ignacio Briceño Balcázar
- Doctoral Program in Biosciences, Human Genetics Group, Faculty of Medicine, University of La Sabana, Chía 250001, Colombia;
| |
Collapse
|
2
|
Ávila-Arcos MC, Raghavan M, Schlebusch C. Going local with ancient DNA: A review of human histories from regional perspectives. Science 2023; 382:53-58. [PMID: 37797024 DOI: 10.1126/science.adh8140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Ancient DNA (aDNA) has added a wealth of information about our species' history, including insights on genetic origins, migrations and gene flow, genetic admixture, and health and disease. Much early work has focused on continental-level questions, leaving many regional questions, especially those relevant to the Global South, comparatively underexplored. A few success stories of aDNA studies from smaller laboratories involve more local aspects of human histories and health in the Americas, Africa, Asia, and Oceania. In this Review, we cover some of these contributions by synthesizing finer-scale questions of importance to the archaeogenetics field, as well as to Indigenous and Descendant communities. We further highlight the potential of aDNA to uncover past histories in regions where colonialism has neglected the oral histories of oppressed peoples.
Collapse
Affiliation(s)
- María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Maanasa Raghavan
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Carina Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Johannesburg, South Africa
- SciLifeLab, Uppsala, Sweden
| |
Collapse
|
3
|
da Silva Coelho FA, Gill S, Tomlin CM, Papavassiliou M, Farley SD, Cook JA, Sonsthagen SA, Sage GK, Heaton TH, Talbot SL, Lindqvist C. Ancient bears provide insights into Pleistocene ice age refugia in Southeast Alaska. Mol Ecol 2023. [PMID: 37096383 DOI: 10.1111/mec.16960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
During the Late Pleistocene, major parts of North America were periodically covered by ice sheets. However, there are still questions about whether ice-free refugia were present in the Alexander Archipelago along the Southeast (SE) Alaska coast during the last glacial maximum (LGM). Numerous subfossils have been recovered from caves in SE Alaska, including American black (Ursus americanus) and brown (U. arctos) bears, which today are found in the Alexander Archipelago but are genetically distinct from mainland bear populations. Hence, these bear species offer an ideal system to investigate long-term occupation, potential refugial survival and lineage turnover. Here, we present genetic analyses based on 99 new complete mitochondrial genomes from ancient and modern brown and black bears spanning the last ~45,000 years. Black bears form two SE Alaskan subclades, one preglacial and another postglacial, that diverged >100,000 years ago. All postglacial ancient brown bears are closely related to modern brown bears in the archipelago, while a single preglacial brown bear is found in a distantly related clade. A hiatus in the bear subfossil record around the LGM and the deep split of their pre- and postglacial subclades fail to support a hypothesis of continuous occupancy in SE Alaska throughout the LGM for either species. Our results are consistent with an absence of refugia along the SE Alaska coast, but indicate that vegetation quickly expanded after deglaciation, allowing bears to recolonize the area after a short-lived LGM peak.
Collapse
Affiliation(s)
| | - Stephanie Gill
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Crystal M Tomlin
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Sean D Farley
- Alaska Department of Fish and Game, Anchorage, Alaska, USA
| | - Joseph A Cook
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sarah A Sonsthagen
- U.S. Geological Survey, Nebraska Cooperative Fish and Wildlife Research Unit, University of Nebraska-Lincoln, School of Natural Resources, Lincoln, Nebraska, USA
| | - George K Sage
- Far Northwestern Institute of Art and Science, Anchorage, Alaska, USA
| | - Timothy H Heaton
- Department of Earth Sciences, University of South Dakota, Vermillion, South Dakota, USA
| | - Sandra L Talbot
- Far Northwestern Institute of Art and Science, Anchorage, Alaska, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|