1
|
Guan F, Xiao X, Dong R, Wang C, Jin Z, Wu S, Wu Y, Yang Y. Detection and functional validation of point mutations in acetylcholinesterase-1 associated with organophosphate resistance in field populations of Helicoverpa armigera. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:359-368. [PMID: 39549281 DOI: 10.1093/jee/toae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
Point mutations in the acetylcholinesterase-1 gene (ace-1) have been associated with resistance to OPs in many insects. However, the presence and function of ace-1 mutations associated with OP resistance in Helicoverpa armigera (Lepidoptera: Noctuidae), a significant lepidopteran pest damaging a wide range of crops, remain largely unexplored. This study investigated resistance to the OP insecticide phoxim in 12 field populations of H. armigera from northern China in 2022, revealing low levels of resistance (2.5- to 6.7-fold). Using an amplicon sequencing approach, we screened for ace-1 mutations in 13,874 moths collected from 114 populations collected between 2006 and 2022. We found 3 amino acid substitutions (A201S, G227E, and F290V) potentially related to OP resistance. The mean frequencies of A201S, G227E, and F290V mutations were 0.0032, 0.0001, and 0.0001, respectively. To assess these mutations' role in OP resistance, we expressed wild-type and mutant AChE1 proteins in Sf9 cells. Biochemical characterization revealed a 3.1-fold and 3.3-fold increase in the I50 of chlorpyrifos-oxon for A201S and F290V mutants compared to the wild-type enzyme, correlating with a 2.9-fold and 2.7-fold decrease in the Ki value. No enzyme activity was observed in the G227E mutant, indicating that only A201S and F290V confer insensitivity to chlorpyrifos-oxon. Our study demonstrates that amplicon sequencing is an effective method for large-scale screening of resistance-associated point mutations in field populations of H. armigera and potentially other insect pests. It also identifies A201S and F290V in AChE1 as potential point mutations conferring OP resistance in field populations of H. armigera.
Collapse
Affiliation(s)
- Fang Guan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xin Xiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rongrong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chenyang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zeng Jin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Chang Y, Xu W, Wang S, Zhu M, Ru Y, Xu Z, Chen G, Li Y. Characterization of Four Carboxylesterases Involved in Detoxification of β-Cypermethrin, λ-Cyhalothrin, and Malathion in Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25533-25548. [PMID: 39508741 DOI: 10.1021/acs.jafc.4c07451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a globally devastating pest and has evolved with varying levels of resistance to a broader spectrum of insecticides. CarEs are major enzymes involved in insecticide detoxification and metabolic resistance. Four CarE genes were identified and cloned from H. armigera, and the expression pattern analyses indicated that they were predominantly expressed in the detoxifying tissues and larval feeding periods. The insecticide inductive assays further suggested that these CarE genes with expressions were significantly upregulated after beta-cypermethrin, lambda-cyhalothrin, malathion, and chlorpyrifos exposures. The purified recombinant proteins of both CarE016B and CarE016C by bacterial expression exhibited significantly higher catalytic efficiency toward α-naphthyl acetate and also showed relatively stronger binding with both β-cypermethrin and λ-cyhalothrin compared to the CarE006C and CarE015A. In vitro metabolism assay with HPLC suggests that CarE016B and CarE016C have the ability to metabolize β-cypermethrin, λ-cyhalothrin, and malathion with varying hydrolase activities. GC-MS/MS analysis identified 3-phenoxybenzaldehyde (3-PBAld) as the metabolite of both β-cypermethrin and λ-cyhalothrin. Homology modeling and molecular docking analyses further indicate that these three types of insecticides could be anchored into the active pocket of both CarEs. Collectively, these results demonstrate that both CarE016B and CarE016C play a critical role in the detoxification of pyrethroid and organophosphate insecticides in H. armigera. This study provides the foundations for a comprehensive understanding of the role of the CarEs family in insecticide detoxification and resistance in H. armigera.
Collapse
Affiliation(s)
- Yongmei Chang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Weihuan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengyao Zhu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanan Ru
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiheng Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangyou Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongqiang Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Legan AW, Allan CW, Jensen ZN, Degain BA, Yang F, Kerns DL, Benowitz KM, Fabrick JA, Li X, Carrière Y, Matzkin LM, Tabashnik BE. Mismatch between lab-generated and field-evolved resistance to transgenic Bt crops in Helicoverpa zea. Proc Natl Acad Sci U S A 2024; 121:e2416091121. [PMID: 39503848 PMCID: PMC11588094 DOI: 10.1073/pnas.2416091121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 11/27/2024] Open
Abstract
Transgenic crops producing crystalline (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) have been used extensively to control some major crop pests. However, many populations of the noctuid moth Helicoverpa zea, one of the most important crop pests in the United States, have evolved practical resistance to several Cry proteins including Cry1Ac. Although mutations in single genes that confer resistance to Cry proteins have been identified in lab-selected and gene-edited strains of H. zea and other lepidopteran pests, the genetic basis of field-evolved resistance to Cry proteins in H. zea has remained elusive. We used a genomic approach to analyze the genetic basis of field-evolved resistance to Cry1Ac in 937 H. zea derived from 17 sites in seven states of the southern United States. We found evidence for extensive gene flow among all populations studied. Field-evolved resistance was not associated with mutations in 20 single candidate genes previously implicated in resistance or susceptibility to Cry proteins in H. zea or other lepidopterans. Instead, resistance in field samples was associated with increased copy number of a cluster of nine trypsin genes. However, trypsin gene amplification occurred in a susceptible sample and not in all resistant samples, implying that this amplification does not always confer resistance and mutations in other genes also contribute to field-evolved resistance to Cry1Ac in H. zea. The mismatch between lab-generated and field-evolved resistance in H. zea is unlike other cases of Bt resistance and reflects challenges for managing this pest.
Collapse
Affiliation(s)
- Andrew W. Legan
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | - Carson W. Allan
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | - Zoe N. Jensen
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | | | - Fei Yang
- Department of Entomology, University of Minnesota, St. Paul, MN55108
| | - David L. Kerns
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Kyle M. Benowitz
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ85212
| | - Jeffrey A. Fabrick
- US Department of Agriculture, Agricultural Research Service, US Arid Land Agricultural Research Center, Maricopa, AZ85138
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | | | | |
Collapse
|
4
|
Ruan J, Yang Y, Carrière Y, Wu Y. Development of resistance monitoring for Helicoverpa armigera (Lepidoptera: Noctuidae) resistance to pyramided Bt cotton in China. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2093-2099. [PMID: 39186571 DOI: 10.1093/jee/toae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is a significant cotton pest worldwide. Bacillus thuringiensis (Bt) cotton producing Cry1Ac has been used since 1997 for the control of this pest in China and a significant increase in H. armigera resistance to Cry1Ac has occurred in northern China. To mitigate resistance evolution, it is necessary to develop and plant pyramided 2- and 3-toxin Bt cotton to replace Cry1Ac cotton. For sustainable use of pyramided Bt cotton, we used diet overlay bioassays to measure the baseline susceptibility of H. armigera to Cry2Ab in 33 populations collected in 2017, 2018, and 2021 in 12 locations from major cotton-producing areas of China. The lethal concentration killing 50% (LC50) or 99% (LC99) of individuals from the populations ranged from 0.030 to 0.138 µg/cm2 and 0.365 to 2.964 µg/cm2, respectively. The ratio of the LC50 for the most resistant and susceptible population was 4.6, indicating moderate among-population variability in resistance. The susceptibility of H. armigera to Cry2Ab did not vary significantly over years. A diagnostic concentration of 2 µg/cm2 was calculated as twice the LC99 from an analysis of pooled data for the field-collected populations. This concentration discriminated well between susceptible and resistant individuals, as it killed all larvae from a susceptible laboratory strain and 0%, 0%, and 23% of larvae from 3 laboratory strains with > 100-fold resistance to Cry2Ab. These baseline susceptibility data and diagnostic concentration for Cry2Ab will be useful for monitoring the evolution of H. armigera resistance to pyramided Bt cotton in China.
Collapse
Affiliation(s)
- Jianqiu Ruan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Yang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yves Carrière
- Department of Entomology, The University of Arizona, Tucson, AZ, USA
| | - Yidong Wu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Carrière Y, Tabashnik BE. Negative association between host plant suitability and the fitness cost of resistance to Bacillus thuringiensis (Bacillales: Bacillaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1106-1112. [PMID: 38603568 DOI: 10.1093/jee/toae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) toxins are commonly used for controlling insect pests. Nearby refuges of non-Bt host plants play a central role in delaying the evolution of resistance to Bt toxins by pests. Pervasive fitness costs associated with resistance, which entail lower fitness of resistant than susceptible individuals in refuges, can increase the ability of refuges to delay resistance. Moreover, these costs are affected by environmental factors such as host plant suitability, implying that manipulating refuge plant suitability could improve the success of the refuge strategy. Based on results from a previous study of Trichoplusia ni resistant to Bt sprays, it was proposed that low-suitability host plants could magnify costs. To test this hypothesis, we investigated the association between host plant suitability and fitness costs for 80 observations from 30 cases reported in 18 studies of 8 pest species from 5 countries. Consistent with the hypothesis, the association between plant suitability and fitness cost was negative. With plant suitability scaled to range from 0 (low) to 1 (high), the expected cost was 20.7% with a suitability of 1 and the fitness cost increased 2.5% for each 0.1 decrease in suitability. The most common type of resistance to Bt toxins involves mutations affecting a few types of midgut proteins to which Bt toxins bind to kill insects. A better understanding of how such mutations interact with host plant suitability to generate fitness costs could be useful for enhancing the refuge strategy and sustaining the efficacy of Bt crops.
Collapse
|
6
|
Gan C, Zhang Z, Jin Z, Wang F, Fabrick JA, Wu Y. Helicoverpa armigera ATP-binding cassette transporter ABCA2 is a functional receptor of Bacillus thuringiensis Cry2Ab toxin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105658. [PMID: 38072533 DOI: 10.1016/j.pestbp.2023.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
Crystalline (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) are widely used in transgenic crops to control important insect pests. Bt crops have many benefits compared with traditional broad-spectrum insecticides, including improved pest control with reduced negative impacts on off-target organisms and fewer environmental consequences. Transgenic corn and cotton producing Cry2Ab Bt toxin are used globally to control several major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Resistance to the Cry2Ab toxin and to Bt crops producing Cry2Ab is associated with mutations in the midgut ATP-binding cassette transporter ABCA2 gene in several lepidopterans. Gene-editing knockout has further shown that ABCA2 plays an important functional role in Cry2Ab intoxication. However, the precise role of ABCA2 in the mode of action of Cry2Ab has yet to be reported. Here, we used two in vitro expression systems to study the roles of the H. armigera ABCA2 (HaABCA2) protein in Cry2Ab intoxication. Cry2Ab bound to cultured Sf9 insect cells producing HaABCA2, resulting in specific and dose-dependent susceptibility to Cry2Ab. In contrast, Sf9 cells expressing recombinant mutant proteins missing at least one of the extracellular loop regions 1, 3, 4, and 6 or the intracellular loop containing nucleotide-binding domain 1 lost susceptibility to Cry2Ab, indicating these regions are important for receptor function. Consistent with these results, Xenopus laevis oocytes expressing recombinant HaABCA2 showed strong ion membrane flux in the presence of Cry2Ab, suggesting that HaABCA2 is involved in promoting pore formation during Cry2Ab intoxication. Together with previously published data, our results support HaABCA2 being an important receptor of Cry2Ab where it functions to promote intoxication in H. armigera.
Collapse
Affiliation(s)
- Chunxia Gan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zheng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zeng Jin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Falong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|