1
|
Ji Z, Lomi E, Jeffery K, Mitchell AS, Burgess N. Phase Precession Relative to Turning Angle in Theta-Modulated Head Direction Cells. Hippocampus 2025; 35:e70008. [PMID: 40071745 PMCID: PMC11898577 DOI: 10.1002/hipo.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Grid and place cells typically fire at progressively earlier phases within each cycle of the theta rhythm as rodents run across their firing fields, a phenomenon known as theta phase precession. Here, we report theta phase precession relative to turning angle in theta-modulated head direction cells within the anteroventral thalamic nucleus (AVN). As rodents turn their heads, these cells fire at progressively earlier phases as head direction sweeps over their preferred tuning direction. The degree of phase precession increases with angular head velocity. Moreover, phase precession is more pronounced in those theta-modulated head direction cells that exhibit theta skipping, with a stronger theta-skipping effect correlating with a higher degree of phase precession. These findings are consistent with a ring attractor model that integrates external theta input with internal firing rate adaptation-a phenomenon we identified in head direction cells within AVN. Our results broaden the range of information known to be subject to neural phase coding and enrich our understanding of the neural dynamics supporting spatial orientation and navigation.
Collapse
Affiliation(s)
- Zilong Ji
- UCL Institute of Cognitive Neuroscience, University College LondonLondonUK
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Eleonora Lomi
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Kate Jeffery
- School of Psychology & Neuroscience, University of GlasgowGlasgowUK
| | - Anna S. Mitchell
- School of Psychology, Speech, and Hearing, University of CanterburyChristchurchNew Zealand
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, University College LondonLondonUK
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
2
|
Jiang S, Hijazi S, Sarkany B, Gautsch VG, LaChance PA, Hasselmo ME, Bannerman D, Viney TJ. Pathological tau alters head direction signaling and induces spatial disorientation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.07.622548. [PMID: 39574637 PMCID: PMC11581017 DOI: 10.1101/2024.11.07.622548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Spatial disorientation, an early symptom of dementia, is emerging as an early and reliable cognitive biomarker predicting future memory problems associated with Alzheimer's disease, but the underlying neural mechanisms have yet to be fully defined. The anterodorsal thalamic nucleus (ADn) exhibits early and selective vulnerability to pathological misfolded forms of tau, a major hallmark of Alzheimer's disease and ageing. The ADn contains a high density of head direction (HD) cells, which contribute to spatial navigation and orientation. Hence, their disruption may contribute to spatial disorientation. To test this, we virally expressed human mutant tau (htau) in the ADn of adult mice. HD-tau mice were defined by phosphorylated and oligomeric forms of htau in ADn somata and in axon terminals in postsynaptic target regions. Compared to controls, HD-tau mice exhibited increased looping behavior during spatial learning, and made a greater number of head turns during memory recall, indicative of spatial disorientation. Using in vivo extracellular recordings, we identified htau-expressing ADn cells and found a lower proportion of HD cells in the ADn from HD-tau mice, along with reduced directionality and altered burst firing. These findings provide evidence that expression of pathological human tau can alter HD signaling, leading to impairments in spatial orientation.
Collapse
|
3
|
Hasselmo ME, Robinson JC, LaChance PA. Navigation: Scanning your future path. Curr Biol 2025; 35:R141-R143. [PMID: 39999782 DOI: 10.1016/j.cub.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A new model of how we plan pathways through the world shows that populations of neurons that code our current position, including entorhinal grid cells and head direction cells, could interact to aid planning by scanning alternating forward trajectories through the environment.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA.
| | - Jennifer C Robinson
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Patrick A LaChance
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
4
|
Ji Z, Chu T, Wu S, Burgess N. A systems model of alternating theta sweeps via firing rate adaptation. Curr Biol 2025; 35:709-722.e5. [PMID: 39933521 DOI: 10.1016/j.cub.2024.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 02/13/2025]
Abstract
Place and grid cells provide a neural system for self-location and tend to fire in sequences within each cycle of the hippocampal theta rhythm when rodents run on a linear track. These sequences correspond to the decoded location of the animal sweeping forward from its current location ("theta sweeps"). However, recent findings in open-field environments show alternating left-right theta sweeps and propose a circuit for their generation. Here, we present a computational model of this circuit, comprising theta-modulated head-direction cells, conjunctive grid × direction cells, and pure grid cells, based on continuous attractor dynamics, firing rate adaptation, and modulation by the medial-septal theta rhythm. Due to firing rate adaptation, the head-direction ring attractor exhibits left-right sweeps coding for internal direction, providing an input to the grid cell attractor network shifted along the internal direction, via an intermediate layer of conjunctive grid × direction cells, producing left-right sweeps of position by grid cells. Our model explains the empirical findings, including the alignment of internal position and direction sweeps and the dependence of sweep length on grid spacing. It makes predictions for theta-modulated head-direction cells, including relationships between theta phase precession during turning, theta skipping, anticipatory firing, and directional tuning width, several of which we verify in experimental data from anteroventral thalamus. The model also predicts relationships between position and direction sweeps, running speed, and dorsal-ventral location within the entorhinal cortex. Overall, a simple intrinsic mechanism explains the complex theta dynamics of an internal direction signal within the hippocampal formation, with testable predictions.
Collapse
Affiliation(s)
- Zilong Ji
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Peking University, Haidian District, Beijing 100871, China
| | - Tianhao Chu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Peking University, Haidian District, Beijing 100871, China
| | - Si Wu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Center of Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Peking University, Haidian District, Beijing 100871, China.
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
5
|
Jeffery KJ. Unweaving the Cognitive Map: A Personal History. Hippocampus 2025; 35:e23674. [PMID: 39698925 DOI: 10.1002/hipo.23674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
I have been incredibly fortunate to have worked in the field of hippocampal spatial coding during three of its most exciting decades, the 1990s, 2000s, and 2010s. During this time I had a ringside view of some of the foundational discoveries that were made which have transformed our understanding of the hippocampal system and its role in cognition (especially spatial cognition) and memory. These discoveries inspired me in my own lab over the years to pursue three broad lines of enquiry-3D spatial encoding, context and the sense of direction-which are outlined here. If some of my personal recollections are a little inaccurate (such is the nature of episodic memory!) I apologize in advance.
Collapse
Affiliation(s)
- Kate J Jeffery
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
6
|
Griffiths BJ, Schreiner T, Schaefer JK, Vollmar C, Kaufmann E, Quach S, Remi J, Noachtar S, Staudigl T. Electrophysiological signatures of veridical head direction in humans. Nat Hum Behav 2024; 8:1334-1350. [PMID: 38710766 DOI: 10.1038/s41562-024-01872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Information about heading direction is critical for navigation as it provides the means to orient ourselves in space. However, given that veridical head-direction signals require physical rotation of the head and most human neuroimaging experiments depend upon fixing the head in position, little is known about how the human brain is tuned to such heading signals. Here we adress this by asking 52 healthy participants undergoing simultaneous electroencephalography and motion tracking recordings (split into two experiments) and 10 patients undergoing simultaneous intracranial electroencephalography and motion tracking recordings to complete a series of orientation tasks in which they made physical head rotations to target positions. We then used a series of forward encoding models and linear mixed-effects models to isolate electrophysiological activity that was specifically tuned to heading direction. We identified a robust posterior central signature that predicts changes in veridical head orientation after regressing out confounds including sensory input and muscular activity. Both source localization and intracranial analysis implicated the medial temporal lobe as the origin of this effect. Subsequent analyses disentangled head-direction signatures from signals relating to head rotation and those reflecting location-specific effects. Lastly, when directly comparing head direction and eye-gaze-related tuning, we found that the brain maintains both codes while actively navigating, with stronger tuning to head direction in the medial temporal lobe. Together, these results reveal a taxonomy of population-level head-direction signals within the human brain that is reminiscent of those reported in the single units of rodents.
Collapse
Affiliation(s)
- Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia K Schaefer
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Vollmar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Kaufmann
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jan Remi
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Soheyl Noachtar
- Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
7
|
Dillingham CM, Wilson JJ, Vann SD. Electrophysiological Properties of the Medial Mammillary Bodies across the Sleep-Wake Cycle. eNeuro 2024; 11:ENEURO.0447-23.2024. [PMID: 38621991 PMCID: PMC11055652 DOI: 10.1523/eneuro.0447-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
The medial mammillary bodies (MBs) play an important role in the formation of spatial memories; their dense inputs from hippocampal and brainstem regions makes them well placed to integrate movement-related and spatial information, which is then extended to the anterior thalamic nuclei and beyond to the cortex. While the anatomical connectivity of the medial MBs has been well studied, much less is known about their physiological properties, particularly in freely moving animals. We therefore carried out a comprehensive characterization of medial MB electrophysiology across arousal states by concurrently recording from the medial MB and the CA1 field of the hippocampus in male rats. In agreement with previous studies, we found medial MB neurons to have firing rates modulated by running speed and angular head velocity, as well as theta-entrained firing. We extended the characterization of MB neuron electrophysiology in three key ways: (1) we identified a subset of neurons (25%) that exhibit dominant bursting activity; (2) we showed that ∼30% of theta-entrained neurons exhibit robust theta cycle skipping, a firing characteristic that implicates them in a network for prospective coding of position; and (3) a considerable proportion of medial MB units showed sharp-wave ripple (SWR) responsive firing (∼37%). The functional heterogeneity of MB electrophysiology reinforces their role as an integrative node for mnemonic processing and identifies potential roles for the MBs in memory consolidation through propagation of SWR-responsive activity to the anterior thalamus and prospective coding in the form of theta cycle skipping.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| | - Jonathan J Wilson
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|