1
|
Snipes S, Meier E, Accascina S, Huber R. Extended wakefulness alters the relationship between EEG oscillations and performance in a sustained attention task. J Sleep Res 2024; 33:e14230. [PMID: 38705729 PMCID: PMC11596987 DOI: 10.1111/jsr.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
During drowsiness, maintaining consistent attention becomes difficult, leading to behavioural lapses. Bursts of oscillations in the electroencephalogram (EEG) might predict such lapses, given that alpha bursts increase during inattention and theta bursts increase with time spent awake. Paradoxically, however, alpha bursts decrease with time awake and theta bursts increase during focussed attention and cognitive tasks. Therefore, we investigated to what extent theta and alpha bursts predicted performance in a sustained attention task, either when well rested (baseline, BL) or following 20 h of extended wakefulness (EW). High-density EEG was measured in 18 young adults, and the timing of bursts was related to trial outcomes (fast, slow, and lapse trials). To increase the likelihood of lapses, the task was performed under soporific conditions. Against expectations, alpha bursts were more likely before fast trials and less likely before lapses at baseline, although the effect was substantially reduced during extended wakefulness. Theta bursts showed no significant relationship to behavioural outcome either at baseline or extended wakefulness. However, following exploratory analyses, we found that large-amplitude theta and alpha bursts were more likely to be followed by lapse trials during extended wakefulness but not baseline. In summary, alpha bursts during baseline anticipated better trial outcomes, whereas large-amplitude theta and alpha bursts during extended wakefulness anticipated worse outcomes. Therefore, neither theta nor alpha bursts maintain a consistent relationship with behaviour under different levels of overall vigilance.
Collapse
Affiliation(s)
- Sophia Snipes
- Child Development CentreUniversity Children's Hospital Zürich, University of ZürichZurichSwitzerland
- Neural Control of Movement LabDepartment of Health Sciences and TechnologyZurichSwitzerland
| | - Elias Meier
- Child Development CentreUniversity Children's Hospital Zürich, University of ZürichZurichSwitzerland
| | | | - Reto Huber
- Child Development CentreUniversity Children's Hospital Zürich, University of ZürichZurichSwitzerland
- Sleep & Health ZürichUniversity of ZürichZurichSwitzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric HospitalUniversity of ZürichZurichSwitzerland
| |
Collapse
|
2
|
Gradwohl G, Snipes S, Walitza S, Huber R, Gerstenberg M. Timing and cortical region matter: theta power differences between teenagers affected by Major Depression and healthy controls. J Neural Transm (Vienna) 2024; 131:1105-1115. [PMID: 39105815 PMCID: PMC11365826 DOI: 10.1007/s00702-024-02810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
In adults affected by Major Depressive Disorder (MDD), most findings point to higher electroencephalographic (EEG) theta power during wake compared to healthy controls (HC) as a potential biomarker aiding the diagnostic process or subgrouping for stratified treatment. Besides these group differences, theta power is modulated by time of day, sleep/wake history, and age. Thus, we aimed at assessing if the time of recording alters theta power in teenagers affected by MDD or HC. Standardized wake EEG power was assessed with high-density EEG in 15 children and adolescents with MDD and in 15 age- and sex-matched HC in the evening and morning. Using a two-way ANOVA, group, time, and their interaction were tested. In patients, the current severity of depression was rated using the Children's Depression Rating Scale. Broadband EEG power was lower in the morning after sleep, with a significant interaction (group x time) in central regions in the 4-6 Hz range. In MDD relative to HC, theta power was decreased over occipital areas in the evening and increased over frontal areas in the morning. A higher frontal theta power was correlated with more severe depressive mood in the morning but not in the evening. This was a cross-sectional study design, including patients on antidepressant medication. In conclusion, depending on time of recording, region-specific opposite differences of theta power were found between teenagers with MDD and HC. These findings stress the importance of the time of the recording when investigating theta power's relationship to psychopathology.
Collapse
Affiliation(s)
- Gideon Gradwohl
- Lev Academic Center, Department of Computer Sciences, Jerusalem College of Technology, Jerusalem, Israel
| | - Sophia Snipes
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscicence Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscicence Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Outpatient Services Winterthur, Psychiatric University Hospital Zurich, Albanistrasse 24, Winterthur, 8400, Switzerland.
| |
Collapse
|
3
|
Chatburn A, Lushington K, Cross ZR. Considerations towards a neurobiologically-informed EEG measurement of sleepiness. Brain Res 2024; 1841:149088. [PMID: 38879143 DOI: 10.1016/j.brainres.2024.149088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Sleep is a daily experience across humans and other species, yet our understanding of how and why we sleep is presently incomplete. This is particularly prevalent in research examining the neurophysiological measurement of sleepiness in humans, where several electroencephalogram (EEG) phenomena have been linked with prolonged wakefulness. This leaves researchers without a solid basis for the measurement of homeostatic sleep need and complicates our understanding of the nature of sleep. Recent theoretical and technical advances may allow for a greater understanding of the neurobiological basis of homeostatic sleep need: this may result from increases in neuronal excitability and shifts in excitation/inhibition balance in neuronal circuits and can potentially be directly measured via the aperiodic component of the EEG. Here, we review the literature on EEG-derived markers of sleepiness in humans and argue that changes in these electrophysiological markers may actually result from neuronal activity represented by changes in aperiodic markers. We argue for the use of aperiodic markers derived from the EEG in predicting sleepiness and suggest areas for future research based on these.
Collapse
Affiliation(s)
- Alex Chatburn
- Cognitive Neuroscience Laboratory, University of South Australia, Adelaide, Australia.
| | - Kurt Lushington
- Cognitive Neuroscience Laboratory, University of South Australia, Adelaide, Australia; Centre for Behaviour-Brain-Body: Justice and Society Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory, University of South Australia, Adelaide, Australia; Feinberg School of Medicine, Northwestern University, USA
| |
Collapse
|
4
|
Keihani A, Mayeli A, Donati F, Janssen SA, Huston CA, Colacot RM, Al Zoubi O, Murphy M, Ferrarelli F. Changes in electroencephalographic microstates between evening and morning are associated with overnight sleep slow waves in healthy individuals. Sleep 2024; 47:zsae053. [PMID: 38416814 PMCID: PMC11168754 DOI: 10.1093/sleep/zsae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
STUDY OBJECTIVES Microstates are semi-stable voltage topographies that account for most of electroencephalogram (EEG) variance. However, the impact of time of the day and sleep on microstates has not been examined. To address this gap, we assessed whether microstates differed between the evening and morning and whether sleep slow waves correlated with microstate changes in healthy participants. METHODS Forty-five healthy participants were recruited. Each participant underwent 6 minutes of resting state EEG recordings in the evening and morning, interleaved by sleep EEGs. Evening-to-morning changes in microstate duration, coverage, and occurrence were assessed. Furthermore, correlation between microstate changes and sleep slow-wave activity (SWA) and slow-wave density (SWD) were performed. RESULTS Two-way ANOVAs with microstate class (A, B, C, and D) and time (evening and morning) revealed significant microstate class × time interaction for duration (F(44) = 5.571, p = 0.002), coverage (F(44) = 6.833, p = 0.001), and occurrence (F(44) = 5.715, p = 0.002). Post hoc comparisons showed significant effects for microstate C duration (padj = 0.048, Cohen's d = -0.389), coverage (padj = 0.002, Cohen's d = -0.580), and occurrence (padj = 0.002, Cohen's d = -0.606). Topographic analyses revealed inverse correlations between SWD, but not SWA, and evening-to-morning changes in microstate C duration (r = -0.51, padj = 0.002), coverage (r = -0.45, padj = 0.006), and occurrence (r = -0.38, padj = 0.033). CONCLUSIONS Microstate characteristics showed significant evening-to-morning changes associated with, and possibly regulated by, sleep slow waves. These findings suggest that future microstate studies should control for time of day and sleep effects.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francesco Donati
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabine A Janssen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chloe A Huston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rebekah M Colacot
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Obada Al Zoubi
- McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Murphy
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Snipes S, Krugliakova E, Jaramillo V, Volk C, Furrer M, Studler M, LeBourgeois M, Kurth S, Jenni OG, Huber R. Wake EEG oscillation dynamics reflect both sleep need and brain maturation across childhood and adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581878. [PMID: 38463948 PMCID: PMC10925212 DOI: 10.1101/2024.02.24.581878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
An objective measure of brain maturation is highly insightful for monitoring both typical and atypical development. Slow wave activity, recorded in the sleep electroencephalogram (EEG), reliably indexes changes in brain plasticity with age, as well as deficits related to developmental disorders such as attention-deficit hyperactivity disorder (ADHD). Unfortunately, measuring sleep EEG is resource-intensive and burdensome for participants. We therefore aimed to determine whether wake EEG could likewise index developmental changes in brain plasticity. We analyzed high-density wake EEG collected from 163 participants 3-25 years old, before and after a night of sleep. We compared two measures of oscillatory EEG activity, amplitudes and density, as well as two measures of aperiodic activity, intercepts and slopes. Furthermore, we compared these measures in patients with ADHD (8-17 y.o., N=58) to neurotypical controls. We found that wake oscillation amplitudes behaved the same as sleep slow wave activity: amplitudes decreased with age, decreased after sleep, and this overnight decrease decreased with age. Oscillation densities were also substantially age-dependent, decreasing overnight in children and increasing overnight in adolescents and adults. While both aperiodic intercepts and slopes decreased linearly with age, intercepts decreased overnight, and slopes increased overnight. Overall, our results indicate that wake oscillation amplitudes track both development and sleep need, and overnight changes in oscillation density reflect some yet-unknown shift in neural activity around puberty. No wake measure showed significant effects of ADHD, thus indicating that wake EEG measures, while easier to record, are not as sensitive as those during sleep.
Collapse
Affiliation(s)
- Sophia Snipes
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elena Krugliakova
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Donders Institute, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valeria Jaramillo
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- School of Psychology, University of Surrey, Guildford, UK
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Carina Volk
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Melanie Furrer
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mirjam Studler
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern, Switzerland
| | - Monique LeBourgeois
- University of Colorado at Boulder, Department of Integrative Physiology, Boulder, Colorado, USA
- The Warren Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, Rhode Island, USA
- In memoriam
| | - Salome Kurth
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Switzerland
| |
Collapse
|