1
|
Sun W, Shahrajabian MH, Wang N. A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:267. [PMID: 39861620 PMCID: PMC11768469 DOI: 10.3390/plants14020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. Azospirillum is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions. Different species of Bacillus spp. can increase the growth, yield, and biomass of plants by increasing the availability of nutrients; enhancing the solubilization and subsequent uptake of nutrients; synthesizing indole-3-acetic acid; fixing nitrogen; solubilizing phosphorus; promoting the production of phytohormones; enhancing the growth, production, and quality of fruits and crops via enhancing the production of carotenoids, flavonoids, phenols, and antioxidants; and increasing the synthesis of indoleacetic acid (IAA), gibberellins, siderophores, carotenoids, nitric oxide, and different cell surface components. The aim of this manuscript is to survey the effects of Azospirillum spp. and Bacillus spp. by presenting case studies and successful paradigms in several horticultural and agricultural plants.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-4260-83836
| | | | | |
Collapse
|
2
|
Zaheer MS, Rizwan M, Aijaz N, Hameed A, Ikram K, Ali HH, Niaz Y, Usman Aslam HM, Manoharadas S, Riaz MW, Ahmed N, Bibi R, Manzoor MA, Rehman S. Investigating the synergistic effects of biochar, trans-zeatin riboside, and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. BMC PLANT BIOLOGY 2024; 24:314. [PMID: 38654167 PMCID: PMC11036750 DOI: 10.1186/s12870-024-05038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.
Collapse
Affiliation(s)
- Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Muhammad Rizwan
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Nazish Aijaz
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
- MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Akhtar Hameed
- Institute of Plant Protection, MNS University of Agriculture, Multan, 61000, Pakistan
| | - Kamran Ikram
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafiz Haider Ali
- Department of Agriculture, Government College University, Lahore, 54000, Pakistan
- Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Yasir Niaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hafiz M Usman Aslam
- Institute of Plant Protection, MNS University of Agriculture, Multan, 61000, Pakistan
- Department of Plant Pathology, San Luis Valley Research Center, Colorado State University, Colorado, USA
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muhammad Waheed Riaz
- State Key Laboratory of Wheat Breeding, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271000, China
| | - Nadeem Ahmed
- Institute of Plant Protection, MNS University of Agriculture, Multan, 61000, Pakistan
| | - Rani Bibi
- Institute of Plant Protection, MNS University of Agriculture, Multan, 61000, Pakistan
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shamsur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, China
| |
Collapse
|
3
|
Qian R, Li Y, Liu Y, Sun N, Liu L, Lin X, Sun C. Integrated transcriptomic and metabolomic analysis reveals the potential mechanisms underlying indium-induced inhibition of root elongation in wheat plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168477. [PMID: 37951262 DOI: 10.1016/j.scitotenv.2023.168477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Soil contamination by indium, an emerging contaminant from electronics, has a negative impact on crop growth. Inhibition of root growth serves as a valuable biomarker for predicting indium phytotoxicity. Therefore, elucidating the molecular mechanisms underlying indium-induced root damage is essential for developing strategies to mitigate its harmful effects. Our transcriptomic findings revealed that indium affects the expression of numerous genes related to cell wall composition and metabolism in wheat roots. Morphological and compositional analysis revealed that indium induced a 2.9-fold thickening and a 17.5 % increase in the content of cell walls in wheat roots. Untargeted metabolomics indicated a substantial upregulation of the phenylpropanoid biosynthesis pathway. As the major end product of phenylpropanoid metabolism, lignin significantly accumulated in root cell walls after indium exposure. Together with increased lignin precursors, enhanced activity of lignin biosynthesis-related enzymes was observed. Moreover, analysis of the monomeric content and composition of lignin revealed a significant enrichment of p-hydroxyphenyl (H) and syringyl (S) units in root cell walls under indium stress. The present study contributes to the existing knowledge of indium toxicity. It provides valuable insights for developing sustainable solutions to address the challenges posed by electronic waste and indium contamination on agroecosystems.
Collapse
Affiliation(s)
- Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihao Li
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhao Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|