1
|
Aikman EL, Eccles LE, Stoppel WL. Native Silk Fibers: Protein Sequence and Structure Influences on Thermal and Mechanical Properties. Biomacromolecules 2025; 26:2043-2059. [PMID: 40052735 DOI: 10.1021/acs.biomac.4c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Silk fibers produced by arthropods have inspired an array of materials with applications in healthcare, medical devices, textiles, and sustainability. Silks exhibit biodiversity with distinct variations in primary protein constituent sequences (fibroins, spidroins) and structures across taxonomic classifications, specifically the Lepidopteran and Araneae orders. Leveraging the biodiversity in arthropod silks offers advantages due to the diverse mechanical properties and thermal stabilities achievable, primarily attributed to variations in fiber crystallinity and repeating amino acid motifs. In this review, we aim to delineate known properties of silk fibers and correlate them with predicted protein sequences and secondary structures, informed by newly annotated genomes. We will discuss established patterns in repeat motifs governing specific properties and underscore the biological diversity within silk fibroin and spidroin sequences. Elucidating the relationship between protein sequences and properties of natural silk fibers will identify strategies for designing new materials through rational silk-based fiber design.
Collapse
Affiliation(s)
- Elizabeth L Aikman
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Whitney L Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Imada Y, Rouhova L, Zurovcova M, Hradilova M, Podlahova S, Sehadova H, Zurovec M. Absence of fibroin H sequences and a significant divergence in the putative fibroin L homolog in Neomicropteryx cornuta (Micropterigidae) silk. Commun Biol 2025; 8:434. [PMID: 40082689 PMCID: PMC11906653 DOI: 10.1038/s42003-025-07801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Micropterigidae is regarded as the sister group of all the other Lepidoptera, providing important insights into the evolution of Lepidoptera. However, the gene and protein profiles of silk from Micropterigidae have not yet been identified. In this study, we investigate the components of silk cocoons of the micropterigid species Neomicropteryx cornuta. Here we show that the protein fibroin heavy chain (FibH) is absent in the silk of N. cornuta and that the putative homolog of fibroin light chain (FibL) is also absent or severely altered. This is confirmed by transcriptome and genome analyses of the conserved regions in this species. The examination of the synteny around the fibH genes in several Lepidoptera and Trichoptera species shows that the genomic region containing this gene is absent in another micropterigid species, Micropterix aruncella. In contrast, we found putative orthologs of fibH and fibL in the representative transcripts of another distinct clade, Eriocraniidae. This study shows that the loss of FibH and the loss or severe divergence of FibL occurrs specifically in the family Micropterigidae and reveals dynamic evolutionary changes in silk composition during the early evolution of Lepidoptera. It also shows that silk proteins without FibH can form a solid cocoon.
Collapse
Affiliation(s)
- Yume Imada
- Kyoto University, Graduate School of Science, Kyoto, 606-8502, Japan
| | - Lenka Rouhova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Martina Zurovcova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, 37005, Czech Republic
| | - Miluse Hradilova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, 142 20, Czech Republic
| | - Sarka Podlahova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Hana Sehadova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, 37005, Czech Republic.
- Faculty of Science, University of South Bohemia, Ceske Budejovice, 37005, Czech Republic.
| |
Collapse
|
3
|
Standring S, Heckenhauer J, Stewart RJ, Frandsen PB. Unraveling the genetics of underwater caddisfly silk. Trends Genet 2025:S0168-9525(25)00004-6. [PMID: 39893090 DOI: 10.1016/j.tig.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Hundreds of thousands of arthropod species use silk to capture prey, build protective structures, or anchor eggs. While most silk-producers are terrestrial, caddisflies construct silken capture nets and portable cases in aquatic environments. Given the potential practical applications of this underwater bioadhesive, there is an emerging body of research focused on understanding the evolution of the genetic architecture of aquatic silk. This research has unveiled molecular adaptations specific to caddisfly silk, such as extensive phosphorylation of the primary silk protein and the existence of numerous unique accessory silk proteins. We discuss the molecular evolution of caddisfly silk genes, how they interact with the environment, and suggest future directions for caddisfly silk genetics research.
Collapse
Affiliation(s)
- Samantha Standring
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jacqueline Heckenhauer
- Senckenberg Research Institute and Natural History Museum Frankfurt, Terrestrial Zoology, 60325 Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
| | - Russell J Stewart
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
4
|
Tan YL, Leow Y, Min Wong JH, Loh XJ, Goh R. Exploring Stimuli-Responsive Natural Processes for the Fabrication of High-Performance Materials. Biomacromolecules 2024; 25:5437-5453. [PMID: 39153005 DOI: 10.1021/acs.biomac.4c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Climate change and environmental pollution have underscored the urgency for more sustainable alternatives in synthetic polymer production. Nature's repertoire of biopolymers with excellent multifaceted properties alongside biodegradability could inspire next-generation innovative green polymer fabrication routes. Stimuli-induced processing, driven by changes in environmental factors, such as pH, ionic strength, and mechanical forces, plays a crucial role in natural polymeric self-assembly process. This perspective aims to close the gap in understanding biopolymer formation by highlighting the essential role of stimuli triggers in facilitating the bottom-up fabrication, allowing for the formation of intricate hierarchical structures. In particular, this perspective will delve into the stimuli-responsive processing of high-performance biopolymers produced by mussels, caddisflies, velvet worms, sharks, whelks, and squids, which are known for their robust mechanical properties, durability, and wet adhesion capabilities. Finally, we provide an overview of current advancements and challenges in understanding stimuli-induced natural formation pathways and their translation to biomimetic materials.
Collapse
Affiliation(s)
- Yee Lin Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| |
Collapse
|
5
|
Heckenhauer J, Plotkin D, Martinez JI, Bethin J, Pauls SU, Frandsen PB, Kawahara AY. Genomic resources of aquatic Lepidoptera, Elophila obliteralis and Hyposmocoma kahamanoa, reveal similarities with Trichoptera in amino acid composition of major silk genes. G3 (BETHESDA, MD.) 2024; 14:jkae093. [PMID: 38722626 PMCID: PMC11373647 DOI: 10.1093/g3journal/jkae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 09/06/2024]
Abstract
While most species of butterflies and moths (Lepidoptera) have entirely terrestrial life histories, ∼0.5% of the described species are known to have an aquatic larval stage. Larvae of aquatic Lepidoptera are similar to caddisflies (Trichoptera) in that they use silk to anchor themselves to underwater substrates or to build protective cases. However, the physical properties and genetic elements of silks in aquatic Lepidoptera remain unstudied, as most research on lepidopteran silk has focused on the commercially important silkworm, Bombyx mori. Here, we provide high-quality PacBio HiFi genome assemblies of 2 distantly-related aquatic Lepidoptera species [Elophila obliteralis (Pyraloidea: Crambidae) and Hyposmocoma kahamanoa (Gelechioidea: Cosmopterigidae)]. As a step toward understanding the evolution of underwater silk in aquatic Lepidoptera, we used the genome assemblies and compared them to published genetic data of aquatic and terrestrial Lepidoptera. Sequences of the primary silk protein, h-fibroin, in aquatic moths have conserved termini and share a basic motif structure with terrestrial Lepidoptera. However, these sequences were similar to aquatic Trichoptera in that the percentage of positively and negatively charged amino acids was much higher than in terrestrial Lepidoptera, indicating a possible adaptation of silks to aquatic environments.
Collapse
Affiliation(s)
- Jacqueline Heckenhauer
- Senckenberg Research Institute and Natural History Museum Frankfurt, Terrestrial Zoology, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
| | - David Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jose I Martinez
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jacob Bethin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Steffen U Pauls
- Senckenberg Research Institute and Natural History Museum Frankfurt, Terrestrial Zoology, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Paul B Frandsen
- Department of Plant and Wildlife Science, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, DC 20560, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Powell A, Heckenhauer J, Pauls SU, Ríos-Touma B, Kuranishi RB, Holzenthal RW, Razuri-Gonzales E, Bybee S, Frandsen PB. Evolution of Opsin Genes in Caddisflies (Insecta: Trichoptera). Genome Biol Evol 2024; 16:evae185. [PMID: 39176990 PMCID: PMC11381090 DOI: 10.1093/gbe/evae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Insects have evolved complex and diverse visual systems in which light-sensing protein molecules called "opsins" couple with a chromophore to form photopigments. Insect photopigments group into three major gene families based on wavelength sensitivity: long wavelength (LW), short wavelength (SW), and ultraviolet wavelength (UV). In this study, we identified 123 opsin sequences from whole-genome assemblies across 25 caddisfly species (Insecta: Trichoptera). We discovered the LW opsins have the most diversity across species and form two separate clades in the opsin gene tree. Conversely, we observed a loss of the SW opsin in half of the trichopteran species in this study, which might be associated with the fact that caddisflies are active during low-light conditions. Lastly, we found a single copy of the UV opsin in all the species in this study, with one exception: Athripsodes cinereus has two copies of the UV opsin and resides within a clade of caddisflies with colorful wing patterns.
Collapse
Affiliation(s)
- Ashlyn Powell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Steffen U Pauls
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Blanca Ríos-Touma
- Facultad de Ingenierías y Ciencias Aplicadas, Ingeniería Ambiental, Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud, Universidad de Las Américas, Quito, Ecuador
| | - Ryoichi B Kuranishi
- Graduate School of Science, Chiba University, Chiba, Japan
- Kanagawa Institute of Technology, Kanagawa, Japan
| | | | | | - Seth Bybee
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
7
|
Markee A, Godfrey RK, Frandsen PB, Weng YM, Triant DA, Kawahara AY. De Novo Long-Read Genome Assembly and Annotation of the Luna Moth (Actias luna) Fully Resolves Repeat-Rich Silk Genes. Genome Biol Evol 2024; 16:evae148. [PMID: 38957923 PMCID: PMC11258402 DOI: 10.1093/gbe/evae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
We present the first long-read de novo assembly and annotation of the luna moth (Actias luna) and provide the full characterization of heavy chain fibroin (h-fibroin), a long and highly repetitive gene (>20 kb) essential in silk fiber production. There are >160,000 described species of moths and butterflies (Lepidoptera), but only within the last 5 years have we begun to recover high-quality annotated whole genomes across the order that capture h-fibroin. Using PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species. The assembled genome has a length of 532 Mb, a contig N50 of 16.8 Mb, an L50 of 14 contigs, and 99.4% completeness (BUSCO). Our annotation using Bombyx mori protein and A. luna RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267 functionally annotated proteins and a full-length h-fibroin annotation of 2,679 amino acid residues.
Collapse
Affiliation(s)
- Amanda Markee
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | | | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Yi-Ming Weng
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Deborah A Triant
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Rouhova L, Zurovcova M, Hradilova M, Sery M, Sehadova H, Zurovec M. Comprehensive analysis of silk proteins and gland compartments in Limnephilus lunatus, a case-making trichopteran. BMC Genomics 2024; 25:472. [PMID: 38745159 PMCID: PMC11092239 DOI: 10.1186/s12864-024-10381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Caddisfly larvae produce silk containing heavy and light fibroins, similar to the silk of Lepidoptera, for the construction of underwater structures. We analyzed the silk of Limnephilus lunatus belonging to the case-forming suborder Integripalpia. We analyzed the transcriptome, mapped the transcripts to a reference genome and identified over 80 proteins using proteomic methods, and checked the specificity of their expression. For comparison, we also analyzed the transcriptome and silk proteome of Limnephilus flavicornis. Our results show that fibroins and adhesives are produced together in the middle and posterior parts of the silk glands, while the anterior part produces enzymes and an unknown protein AT24. The number of silk proteins of L. lunatus far exceeds that of the web-spinning Plectrocnemia conspersa, a previously described species from the suborder Annulipalpia. Our results support the idea of increasing the structural complexity of silk in rigid case builders compared to trap web builders.
Collapse
Affiliation(s)
- Lenka Rouhova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Martina Zurovcova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Miluse Hradilova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michal Sery
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Hana Sehadova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
9
|
Ge X, Peng L, Deng Z, Du J, Sun C, Wang B. Chromosome-scale genome assemblies of Himalopsyche anomala and Eubasilissa splendida (Insecta: Trichoptera). Sci Data 2024; 11:267. [PMID: 38443432 PMCID: PMC10914795 DOI: 10.1038/s41597-024-03097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Trichoptera is one of the most evolutionarily successful aquatic insect lineages and is highly valued value in adaptive evolution research. This study presents the chromosome-level genome assemblies of Himalopsyche anomala and Eubasilissa splendida achieved using PacBio, Illumina, and Hi-C sequencing. For H. anomala and E. splendida, assembly sizes were 663.43 and 859.28 Mb, with scaffold N50 lengths of 28.44 and 31.17 Mb, respectively. In H. anomala and E. splendida, we anchored 24 and 29 pseudochromosomes, and identified 11,469 and 10,554 protein-coding genes, respectively. The high-quality genomes of H. anomala and E. splendida provide critical genomic resources for understanding the evolution and ecology of Trichoptera and performing comparative genomics analyses.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lang Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Deng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Du
- Jiuzhaigou Administration Bureau, Jiuzhaigou County, Aba Prefecture, Sichuan Province, 623402, China
| | - Changhai Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Beixin Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|