1
|
Rai P, Clark CJ, Womack CB, Dearing C, Thammathong J, Norman DD, Tigyi GJ, Sen S, Bicker K, Weissmiller AM, Banerjee S. Novel Autotaxin Inhibitor ATX-1d Significantly Enhances Potency of Paclitaxel-An In Silico and In Vitro Study. Molecules 2024; 29:4285. [PMID: 39339280 PMCID: PMC11434342 DOI: 10.3390/molecules29184285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30-40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous literature has shown that cytotoxic cancer therapies and ionizing radiation damage tumors, prompting cancer cells to exploit the autotaxin (ATX)-lysophosphatidic acid (LPA)-lysophosphatidic acid receptor (LPAR) signaling axis to enhance survival pathways, thus reducing treatment efficacy. Therefore, targeting this signaling axis has become a crucial strategy to overcome some forms of cancer resistance. Addressing this challenge, we identified and assessed ATX-1d, a novel compound targeting ATX, through computational methods and in vitro assays. ATX-1d exhibited an IC50 of 1.8 ± 0.3 μM for ATX inhibition and demonstrated a significant binding affinity for ATX, as confirmed by MM-GBSA, QM/MM-GBSA, and SAPT in silico methods. ATX-1d significantly amplified the potency of paclitaxel, increasing its effectiveness tenfold in 4T1 murine breast carcinoma cells and fourfold in A375 human melanoma cells without inducing cytotoxic effects as a single agent.
Collapse
Affiliation(s)
- Prateek Rai
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - Christopher J. Clark
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - Carl B. Womack
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Curtis Dearing
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - Joshua Thammathong
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - Derek D. Norman
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (D.D.N.); (G.J.T.)
| | - Gábor J. Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (D.D.N.); (G.J.T.)
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Dadri 201314, UP, India;
| | - Kevin Bicker
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| | - April M. Weissmiller
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Souvik Banerjee
- Molecular Biosciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (P.R.); (C.J.C.); (K.B.); (A.M.W.)
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA; (C.D.); (J.T.)
| |
Collapse
|
2
|
Rath S, Sen S. Protocol for aqueous synthesis of bioactive quaternary ammonium betaine derivatives under blue LED. STAR Protoc 2024; 5:102890. [PMID: 38341848 PMCID: PMC10867440 DOI: 10.1016/j.xpro.2024.102890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024] Open
Abstract
Quaternary ammonium compounds exhibit diverse applications as antibiotics, as surfactants, in paper industries, in sewage treatment, and in aquaculture. Here, we present a protocol for synthesizing a library of bioactive quaternary ammonium betaine derivatives under blue LED in water. We describe steps for preparing diazo compounds, synthesizing glycine betaine derivatives, and isolating pure final compounds via precipitation from an aqueous reaction mixture. This protocol promotes a sustainable approach by using water as the reaction medium and room temperature reactions. For complete details on the use and execution of this protocol, please refer to Rath et al. (2023).1.
Collapse
Affiliation(s)
- Suchismita Rath
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Gautam Buddha Nagar, Chithera, Dadri, UP 201310, India.
| |
Collapse
|