1
|
Arends T, Hamm DC, van der Maarel S, Tapscott SJ. Facioscapulohumeral Dystrophy: Molecular Basis and Therapeutic Opportunities. Cold Spring Harb Perspect Biol 2025; 17:a041492. [PMID: 39009417 PMCID: PMC11733064 DOI: 10.1101/cshperspect.a041492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Facioscapulohumeral dystrophy (FSHD) is caused by misexpression of the early embryonic transcription factor Double Homeobox Protein 4 (DUX4) in skeletal muscle. DUX4 is normally expressed at the 4-cell stage of the human embryo and initiates a portion of the first wave of embryonic gene expression that establishes the totipotent cells of the embryo. Following brief expression, the DUX4 locus is suppressed by epigenetic silencing and remains silenced in nearly all somatic cells. Mutations that cause FSHD decrease the efficiency of epigenetic silencing of the DUX4 locus and result in aberrant expression of this transcription factor in skeletal muscles. DUX4 expression in these skeletal muscles reactivates part of the early totipotent program and suppresses the muscle program-resulting in a progressive muscular dystrophy that affects some muscles earlier than others. These advances in understanding the cause of FSHD have led to multiple therapeutic strategies that are now entering clinical trials.
Collapse
Affiliation(s)
- Tessa Arends
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Danielle C Hamm
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Silvère van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC Leiden, Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
2
|
Mekkaoui F, Drewell RA, Dresch JM, Spratt DE. Experimental approaches to investigate biophysical interactions between homeodomain transcription factors and DNA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195074. [PMID: 39644990 PMCID: PMC11832328 DOI: 10.1016/j.bbagrm.2024.195074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Homeodomain transcription factors (TFs) bind to specific DNA sequences to regulate the expression of target genes. Structural work has provided insight into molecular identities and aided in unraveling structural features of these TFs. However, the detailed affinity and specificity by which these TFs bind to DNA sequences is still largely unknown. Qualitative methods, such as DNA footprinting, Electrophoretic Mobility Shift Assays (EMSAs), Systematic Evolution of Ligands by Exponential Enrichment (SELEX), Bacterial One Hybrid (B1H) systems, Surface Plasmon Resonance (SPR), and Protein Binding Microarrays (PBMs) have been widely used to investigate the biochemical characteristics of TF-DNA binding events. In addition to these qualitative methods, bioinformatic approaches have also assisted in TF binding site discovery. Here we discuss the advantages and limitations of these different approaches, as well as the benefits of utilizing more quantitative approaches, such as Mechanically Induced Trapping of Molecular Interactions (MITOMI), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC), in determining the biophysical basis of binding specificity of TF-DNA complexes and improving upon existing computational approaches aimed at affinity predictions.
Collapse
Affiliation(s)
- Fadwa Mekkaoui
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States of America
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, United States of America.
| |
Collapse
|
3
|
Yaşar B, Boskovic N, Ivask M, Weltner J, Jouhilahti EM, Vill P, Skoog T, Jaakma Ü, Kere J, Bürglin TR, Katayama S, Org T, Kurg A. Molecular cloning of PRD-like homeobox genes expressed in bovine oocytes and early IVF embryos. BMC Genomics 2024; 25:1048. [PMID: 39506635 PMCID: PMC11542365 DOI: 10.1186/s12864-024-10969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Embryonic genome activation (EGA) is a critical step in early embryonic development, as it marks the transition from relying on maternal factors to the initiation of transcription from embryo's own genome. The factors associated with EGA are not well understood and need further investigation. PRD-like (PRDL) homeodomain transcription factors (TFs) are considered to play crucial roles in this early event during development but these TFs have evolved differently, even within mammalian lineages. Different numbers of PRDL TFs have been predicted in bovine (Bos taurus); however, their divergent evolution requires species-specific confirmation and functional investigations. RESULTS In this study, we conducted molecular cloning of mRNAs for the PRDL TFs ARGFX, DUXA, LEUTX, NOBOX, TPRX1, TPRX2, and TPRX3 in bovine oocytes or in vitro fertilized (IVF) preimplantation embryos. Our results confirmed the expression of PRDL TF genes in early bovine development at the cDNA level and uncovered their structures. For each investigated PRDL TF gene, we isolated at least one homeodomain-encoding cDNA fragment, indicative of DNA binding and thus potential role in transcriptional regulation in developing bovine embryos. Additionally, our cDNA cloning approach allowed us to reveal breed-related differences in bovine, as evidenced by the identification of a high number of single nucleotide variants (SNVs) across the PRDL class homeobox genes. Subsequently, we observed the prediction of the 9aa transactivation domain (9aaTAD) motif in the putative protein sequence of TPRX3 leading us to conduct functional analysis of this gene. We demonstrated that the TPRX3 overexpression in bovine fibroblast induces not only protein-coding genes but also short noncoding RNAs involved in splicing and RNA editing. We supported this finding by identifying a shared set of genes between our and published bovine early embryo development datasets. CONCLUSIONS Providing full-length cDNA evidence for previously predicted homeobox genes that belong to PRDL class improves the annotation of the bovine genome. Updating the annotation with seven developmentally-important genes will enhance the accuracy of RNAseq analysis with datasets derived from bovine preimplantation embryos. In addition, the absence of TPRX3 in humans highlights the species-specific and TF-specific regulation of biological processes during early embryo development.
Collapse
Affiliation(s)
- Barış Yaşar
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
| | - Nina Boskovic
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marilin Ivask
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jere Weltner
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism and Research Program, University of Helsinki, Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism and Research Program, University of Helsinki, Helsinki, Finland
| | - Piibe Vill
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tiina Skoog
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Ülle Jaakma
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Juha Kere
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism and Research Program, University of Helsinki, Helsinki, Finland
| | - Thomas R Bürglin
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Shintaro Katayama
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism and Research Program, University of Helsinki, Helsinki, Finland
| | - Tõnis Org
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ants Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Sharma A, Dsilva GJ, Deshpande G, Galande S. Exploring the versatility of zygotic genome regulators: A comparative and functional analysis. Cell Rep 2024; 43:114680. [PMID: 39182225 DOI: 10.1016/j.celrep.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The activation of the zygotic genome constitutes an essential process during early embryogenesis that determines the overall progression of embryonic development. Zygotic genome activation (ZGA) is tightly regulated, involving a delicate interplay of activators and repressors, to precisely control the timing and spatial pattern of gene expression. While regulators of ZGA vary across species, they accomplish comparable outcomes. Recent studies have shed light on the unanticipated roles of ZGA components both during and after ZGA. Moreover, different ZGA regulators seem to have acquired unique functional modalities to manifest their regulatory potential. In this review, we explore these observations to assess whether these are simply anecdotal or contribute to a broader regulatory framework that employs a versatile means to arrive at the conserved outcome.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Greg Jude Dsilva
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India
| | - Girish Deshpande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA.
| | - Sanjeev Galande
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India; Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR 201314, India.
| |
Collapse
|
5
|
Jarosz AS, Halo JV. Transcription of Endogenous Retroviruses: Broad and Precise Mechanisms of Control. Viruses 2024; 16:1312. [PMID: 39205286 PMCID: PMC11359688 DOI: 10.3390/v16081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of retroviral germline infections and are highly abundant in the genomes of vertebrates. At one time considered to be nothing more than inert 'junk' within genomes, ERVs have been tolerated within host genomes over vast timescales, and their study continues to reveal complex co-evolutionary histories within their respective host species. For example, multiple instances have been characterized of ERVs having been 'borrowed' for normal physiology, from single copies to ones involved in various regulatory networks such as innate immunity and during early development. Within the cell, the accessibility of ERVs is normally tightly controlled by epigenetic mechanisms such as DNA methylation or histone modifications. However, these silencing mechanisms of ERVs are reversible, and epigenetic alterations to the chromatin landscape can thus lead to their aberrant expression, as is observed in abnormal cellular environments such as in tumors. In this review, we focus on ERV transcriptional control and draw parallels and distinctions concerning the loss of regulation in disease, as well as their precise regulation in early development.
Collapse
Affiliation(s)
- Abigail S. Jarosz
- Science and Mathematics Division, Lorrain County Community College, Lorrain, OH 44035, USA;
| | - Julia V. Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
6
|
Vega-Sendino M, Lüttmann FF, Olbrich T, Chen Y, Kuenne C, Stein P, Tillo D, Carey GI, Zhong J, Savy V, Radonova L, Lu T, Saykali B, Kim KP, Domingo CN, Schüler L, Günther S, Bentsen M, Bosnakovski D, Schöler H, Kyba M, Maity TK, Jenkins LM, Looso M, Williams CJ, Kim J, Ruiz S. The homeobox transcription factor DUXBL controls exit from totipotency. Nat Genet 2024; 56:697-709. [PMID: 38509386 PMCID: PMC11149696 DOI: 10.1038/s41588-024-01692-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
In mice, exit from the totipotent two-cell (2C) stage embryo requires silencing of the 2C-associated transcriptional program. However, the molecular mechanisms involved in this process remain poorly understood. Here we demonstrate that the 2C-specific transcription factor double homeobox protein (DUX) mediates an essential negative feedback loop by inducing the expression of DUXBL to promote this silencing. We show that DUXBL gains accessibility to DUX-bound regions specifically upon DUX expression. Furthermore, we determine that DUXBL interacts with TRIM24 and TRIM33, members of the TRIM superfamily involved in gene silencing, and colocalizes with them in nuclear foci upon DUX expression. Importantly, DUXBL overexpression impairs 2C-associated transcription, whereas Duxbl inactivation in mouse embryonic stem cells increases DUX-dependent induction of the 2C-transcriptional program. Consequently, DUXBL deficiency in embryos results in sustained expression of 2C-associated transcripts leading to early developmental arrest. Our study identifies DUXBL as an essential regulator of totipotency exit enabling the first divergence of cell fates.
Collapse
Affiliation(s)
| | - Felipe F Lüttmann
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Teresa Olbrich
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yanpu Chen
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | | | - Grace I Carey
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Jiasheng Zhong
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Lenka Radonova
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Tianlin Lu
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Bechara Saykali
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Leah Schüler
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Hans Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Michael Kyba
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Tapan K Maity
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Mario Looso
- Cardio-Pulmonary Institute, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Johnny Kim
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute, Frankfurt, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein/Main, Germany.
- German Center for Lung Research (DZL), Partner Site Rhein/Main, Germany.
- Institute of Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany.
- The Center for Cardiovascular Regeneration and Immunology at TRON-Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz gGmbH, Mainz, Germany.
| | - Sergio Ruiz
- Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|