1
|
Bardy P, MacDonald CIW, Kirchberger PC, Jenkins HT, Botka T, Byrom L, Alim NTB, Traore DAK, Koenig HC, Nicholas TR, Chechik M, Hart SJ, Turkenburg JP, Blaza JN, Beatty JT, Fogg PCM, Antson AA. Penton blooming, a conserved mechanism of genome delivery used by disparate microviruses. mBio 2025; 16:e0371324. [PMID: 40105351 PMCID: PMC11980548 DOI: 10.1128/mbio.03713-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 03/20/2025] Open
Abstract
Microviruses are single-stranded DNA viruses infecting bacteria, characterized by T = 1 shells made of single jelly-roll capsid proteins. To understand how microviruses infect their host cells, we have isolated and studied an unusually large microvirus, Ebor. Ebor belongs to the proposed "Tainavirinae" subfamily of Microviridae and infects the model Alphaproteobacterium Rhodobacter capsulatus. Using cryogenic electron microscopy, we show that the enlarged capsid of Ebor is the result of an extended C-terminus of the major capsid protein. The extra packaging space accommodates genes encoding a lytic enzyme and putative methylase, both absent in microviruses with shorter genomes. The capsid is decorated with protrusions at its 3-fold axes, which we show to recognize lipopolysaccharides on the host surface. Cryogenic electron tomography shows that during infection, Ebor attaches to the host cell via five such protrusions. This attachment brings a single pentameric capsomer into close contact with the cell membrane, creating a special vertex through which the genome is ejected. Both subtomogram averaging and single particle analysis identified two intermediates of capsid opening, showing that the interacting penton opens from its center via the separation of individual capsomer subunits. Structural comparison with the model Bullavirinae phage phiX174 suggests that this genome delivery mechanism may be widely present across Microviridae. IMPORTANCE Tailless Microviridae bacteriophages are major components of the global virosphere. Notably, microviruses are prominent members of the mammalian gut virome, and certain compositions have been linked to serious health disorders; however, a molecular understanding of how they initiate infection of their host remains poorly characterized. We demonstrate that trimeric protrusions located at the corners of a single microvirus capsomer mediate host cell attachment. This interaction triggers opening of the capsomer, driven by separation of subunits from its center, much like flower petals open during blooming. This extensive opening explains how the genome translocation apparatus, along with the genome itself, is able to exit the capsid. "Penton blooming" likely represents a conserved mechanism shared by diverse viruses possessing similar capsid architectures.
Collapse
Affiliation(s)
- Pavol Bardy
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Conor I. W. MacDonald
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
| | - Paul C. Kirchberger
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Tulsa, USA
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lewis Byrom
- York Biomedical Research Institute, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Nawshin T. B. Alim
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Daouda A. K. Traore
- Materials and Structural Analysis, Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Hannah C. Koenig
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Tristan R. Nicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Samuel J. Hart
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
| | - James N. Blaza
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Paul C. M. Fogg
- York Biomedical Research Institute, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
2
|
Fogg PCM. Gene transfer agents: The ambiguous role of selfless viruses in genetic exchange and bacterial evolution. Mol Microbiol 2025; 123:124-131. [PMID: 38511257 PMCID: PMC11841831 DOI: 10.1111/mmi.15251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Gene transfer agents (GTAs) are genetic elements derived from ancestral bacteriophages that have become domesticated by the host. GTAs are present in diverse prokaryotic organisms, where they can facilitate horizontal gene transfer under certain conditions. Unlike typical bacteriophages, GTAs do not exhibit any preference for the replication or transfer of the genes encoding them; instead, they exhibit a remarkable capacity to package chromosomal, and sometimes extrachromosomal, DNA into virus-like capsids and disseminate it to neighboring cells. Because GTAs resemble defective prophages, identification of novel GTAs is not trivial. The detection of candidates relies on the genetic similarity to known GTAs, which has been fruitful in α-proteobacterial lineages but challenging in more distant bacteria. Here we consider several fundamental questions: What is the true prevalence of GTAs in prokaryote genomes? Given there are high costs for GTA production, what advantage do GTAs provide to the bacterial host to justify their maintenance? How is the bacterial chromosome recognized and processed for inclusion in GTA particles? This article highlights the challenges in comprehensively understanding GTAs' prevalence, function and DNA packaging method. Going forward, broad study of atypical GTAs and use of ecologically relevant conditions are required to uncover their true impact on bacterial chromosome evolution.
Collapse
|
3
|
Bardy P, MacDonald CI, Kirchberger PC, Jenkins HT, Botka T, Byrom L, Alim NT, Traore DA, König HC, Nicholas TR, Chechik M, Hart SJ, Turkenburg JP, Blaza JN, Beatty JT, Fogg PC, Antson AA. A stargate mechanism of Microviridae genome delivery unveiled by cryogenic electron tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598214. [PMID: 38915634 PMCID: PMC11195240 DOI: 10.1101/2024.06.11.598214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Single-stranded DNA bacteriophages of the Microviridae family are major components of the global virosphere. Microviruses are highly abundant in aquatic ecosystems and are prominent members of the mammalian gut microbiome, where their diversity has been linked to various chronic health disorders. Despite the clear importance of microviruses, little is known about the molecular mechanism of host infection. Here, we have characterized an exceptionally large microvirus, Ebor, and provide crucial insights into long-standing mechanistic questions. Cryogenic electron microscopy of Ebor revealed a capsid with trimeric protrusions that recognise lipopolysaccharides on the host surface. Cryogenic electron tomography of the host cell colonized with virus particles demonstrated that the virus initially attaches to the cell via five such protrusions, located at the corners of a single pentamer. This interaction triggers a stargate mechanism of capsid opening along the 5-fold symmetry axis, enabling delivery of the virus genome. Despite variations in specific virus-host interactions among different Microviridae family viruses, structural data indicate that the stargate mechanism of infection is universally employed by all members of the family. Startlingly, our data reveal a mechanistic link for the opening of relatively small capsids made out of a single jelly-roll fold with the structurally unrelated giant viruses.
Collapse
Affiliation(s)
- Pavol Bardy
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - Conor I.W. MacDonald
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Paul C. Kirchberger
- Department of Microbiology & Molecular Genetics, Oklahoma State University, US
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Lewis Byrom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Nawshin T.B. Alim
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Daouda A.K. Traore
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, The Netherlands
| | - Hannah C. König
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Tristan R. Nicholas
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - Samuel J. Hart
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - James N. Blaza
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, BC, Canada
| | - Paul C.M. Fogg
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom. YO10 5NG
| |
Collapse
|