1
|
Barak N, Brekhman V, Aharonovich D, Lotan T, Sher D. Jellyfish blooms through the microbial lens: temporal changes, cross-species and Jellyfish-water comparisons. ENVIRONMENTAL MICROBIOME 2025; 20:49. [PMID: 40346699 PMCID: PMC12063254 DOI: 10.1186/s40793-025-00714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Jellyfish blooms have significant ecological and economic impacts, yet the microbial communities associated with these blooms remain poorly understood, despite their potential influence on host fitness and microbial communities in the surrounding water. In this study, we explored temporal and tissue-specific variations in the microbiota of Rhopilema nomadica, the dominant jellyfish species in the Eastern Mediterranean Sea, across winter and summer blooms. During late summer blooms, microbial richness declined, coinciding with an increase in Endozoicomonas and unclassified Rickettsiales, while Tenacibaculum predominantly characterized winter blooms. Tissue-specific analyses revealed bacterial groups that were more consistently associated with different jellyfish tissues (e.g., Bacteroides in the bell and Simkaniaceae in the gonads), suggesting different microbial niches within the host. Furthermore, some key bacteria associated with R. nomadica, including Endozoicomonas, unclassified Rickettsiales, and Bacteroides were detected in the surrounding bloom water but absent from remote seawater, suggesting potential localized transmission dynamics between jellyfish and their immediate marine environment. Finally, a comparative analysis with nine additional jellyfish species identified recurring microbial taxa, including Endozoicomonas, Mycoplasma, and Spiroplasma, though no universal core microbiota was observed. This study represents the first exploration of microbial dynamics within R. nomadica blooms and the most comprehensive analysis of jellyfish-associated microbiomes across bloom stages and tissues to date. Our findings reveal complex relationships between jellyfish species, bloom progression, their microbial communities, and the surrounding seawater.
Collapse
Affiliation(s)
- Noga Barak
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Vera Brekhman
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel
| | - Tamar Lotan
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel.
| | - Daniel Sher
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3103301, Israel.
| |
Collapse
|
2
|
Jensen N, Weiland-Bräuer N, Chibani CM, Schmitz RA. Microbiota-derived β carotene is required for strobilation of Aurelia aurita by impacting host retinoic acid signaling. iScience 2025; 28:111729. [PMID: 39991550 PMCID: PMC11847142 DOI: 10.1016/j.isci.2024.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/04/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
The strobilation process, an asexual reproduction mechanism in Aurelia aurita, transitions from the sessile polyp to the pelagic medusa stage. This study explored the essential role of the microbiome in strobilation, particularly through bacterial beta carotene's impact on the host's retinoic acid signaling pathway. Experiments demonstrated that native polyps undergo normal strobilation while sterile polyps exhibit morphological defects. Supplementing sterile polyps with provitamin A beta carotene or the vitamin A metabolite 9-cis retinoic acid (RA) remedied these defects, underscoring their crucial role in strobilation. Transcriptional analysis revealed that beta carotene and 9-cis RA restored expression of strobilation genes in sterile polyps to native levels. Inhibition of key enzymes in the RA pathway disrupted strobilation, further confirming its importance. The expression of bacterial β-carotenoid synthesis genes in the native microbiome, contrasted with tremendously reduced expression in antibiotic-treated polyps, emphasizes the microbiome's pivotal role in beta carotene provision, facilitating A. aurita's strobilation through RA signaling.
Collapse
Affiliation(s)
- Nadin Jensen
- Institute of General Microbiology, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Nancy Weiland-Bräuer
- Institute of General Microbiology, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Cynthia Maria Chibani
- Institute of General Microbiology, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ruth Anne Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
3
|
Li L, Zhu Y, Wu F, Shen Y, Wang Y, Höfer J, Pozzolini M, Wang M, Xiao L, Dai X. Microbial Diversity and Screening for Potential Pathogens and Beneficial Bacteria of Five Jellyfish Species-Associated Microorganisms Based on 16S rRNA Sequencing. Pol J Microbiol 2024; 73:297-314. [PMID: 39214712 PMCID: PMC11398266 DOI: 10.33073/pjm-2024-026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
Jellyfish, microorganisms, and the marine environment collectively shape a complex ecosystem. This study aimed to analyze the microbial communities associated with five jellyfish species, exploring their composition, diversity, and relationships. Microbial diversity among the species was assessed using 16S rRNA gene sequencing and QIIME analysis. Significant differences in bacterial composition were found, with distinct dominant taxa in each species: Mycoplasmataceae (99.21%) in Aurelia coerulea, Sphingomonadaceae (22.81%) in Cassiopea andromeda, Alphaproteobacteria_unclassified (family level) (64.09%) in Chrysaora quinquecirrha, Parcubacteria_unclassified (family level) (93.11%) in Phacellophora camtschatica, and Chlamydiaceae (35.05%) and Alphaproteobacteria_unclassified (family level) (38.73%) in Rhopilema esculentum. C. andromeda showed the highest diversity, while A. coerulea exhibited the lowest. Correlations among dominant genera varied, including a positive correlation between Parcubacteria_unclassified (genus level) and Chlamydiaceae_unclassified (genus level). Genes were enriched in metabolic pathways and ABC transporters. The most abundant potential pathogens at the phylum level were Proteobacteria, Tenericutes, Chlamydiae, and Epsilonbacteraeota. The differing microbial compositions are likely influenced by species and their habitats. Interactions between jellyfish and microorganisms, as well as among microorganisms, showed interdependency or antagonism. Most microbial gene functions focused on metabolic pathways, warranting further study on the relationship between pathogenic bacteria and these pathways.
Collapse
Affiliation(s)
- Liangzhi Li
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, China
- Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yina Zhu
- Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Feng Wu
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, China
| | - Yuxin Shen
- Department of Radiation Oncology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, egión de Valparaíso, Chile
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, Genova, Italy
| | - Mingke Wang
- Department of Disease Control and Prevention, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Xiaojie Dai
- College of Marine Biological Resources and Management, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Peng S, Ye L, Li Y, Wang F, Sun T, Wang L, Zhao J, Dong Z. Metagenomic insights into jellyfish-associated microbiome dynamics during strobilation. ISME COMMUNICATIONS 2024; 4:ycae036. [PMID: 38571744 PMCID: PMC10988111 DOI: 10.1093/ismeco/ycae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Host-associated microbiomes can play key roles in the metamorphosis of animals. Most scyphozoan jellyfish undergo strobilation in their life cycles, similar to metamorphosis in classic bilaterians. The exploration of jellyfish microbiomes may elucidate the ancestral mechanisms and evolutionary trajectories of metazoan-microbe associations and interactions during metamorphosis. However, current knowledge of the functional features of jellyfish microbiomes remains limited. Here, we performed a genome-centric analysis of associated microbiota across four successive life stages (polyp, early strobila, advanced strobila, and ephyra) during strobilation in the common jellyfish Aurelia coerulea. We observed shifts in taxonomic and functional diversity of microbiomes across distinct stages and proposed that the low microbial diversity in ephyra stage may be correlated with the high expression of the host-derived antimicrobial peptide aurelin. Furthermore, we recovered 43 high-quality metagenome-assembled genomes and determined the nutritional potential of the dominant Vibrio members. Interestingly, we observed increased abundances of genes related to the biosynthesis of amino acids, vitamins, and cofactors, as well as carbon fixation during the loss of host feeding ability, indicating the functional potential of Aurelia-associated microbiota to support the synthesis of essential nutrients. We also identified several potential mechanisms by which jellyfish-associated microbes establish stage-specific community structures and maintain stable colonization in dynamic host environments, including eukaryotic-like protein production, bacterial secretion systems, restriction-modification systems, and clustered regularly interspaced short palindromic repeats-Cas systems. Our study characterizes unique taxonomic and functional changes in jellyfish microbiomes during strobilation and provides foundations for uncovering the ancestral mechanism of host-microbe interactions during metamorphosis.
Collapse
Affiliation(s)
- Saijun Peng
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijing Ye
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yongxue Li
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanghan Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Sun
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Lei Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijun Dong
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|