1
|
Zhang Q, Dai J, Lin Y, Li M. Isobavachalcone alleviates ischemic stroke by suppressing HDAC1 expression and improving M2 polarization. Brain Res Bull 2024; 211:110944. [PMID: 38604377 DOI: 10.1016/j.brainresbull.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Ischemic stroke is a serious cerebrovascular condition. Isobavachalcone (ISO) has been documented to exhibit an anti-inflammatory effect across a variety of diseases; however, its protective impact on ischemic stroke remains unexplored. In this study, we evaluated the influence of ISO in both transient middle cerebral artery occlusion/reperfusion (tMCAO/R) rat models and oxygen-glucose deprivation/reperfusion (OGD/R) cell models. We observed that pretreatment with 50 mg/kg ISO diminished the volume of brain infarction, reduced brain edema, and ameliorated neurological deficits in rats. A reduction in Nissl bodies was noted in the tMCAO/R group, which was reversed following treatment with 50 mg/kg ISO. TUNEL/NeuN double staining revealed a decrease in TUNEL-positive cells in tMCAO/R rats treated with ISO. Furthermore, ISO treatment suppressed the expression of cleaved caspase-3 and BAX, while elevating the expression of BCL-2 in tMCAO/R rats. The levels of CD86 and iNOS were elevated in tMCAO/R rats; conversely, ISO treatment enhanced the expression of CD206 and Arg-1. Additionally, the expression of TNF-α, IL-6, and IL-1β was elevated in tMCAO/R rats, whereas ISO treatment counteracted this effect. ISO treatment also increased the expression of TGF-β and IL-10 in the ischemic penumbra of tMCAO/R rats. It was found that ISO treatment hindered microglial M1 polarization and favored M2 polarization. Histone Deacetylase 1 (HDAC1) is the downstream target protein of ISO, with ISO treatment resulting in decreased HDAC1 expression in both tMCAO/R rats and OGD/R-induced cells. Overexpression of HDAC1 was shown to promote microglial M1 polarization and inhibit M2 polarization in OGD/R+ISO cells. Overall, ISO treatment mitigated brain damage following ischemic stroke by promoting M2 polarization and attenuated ischemic injury by repressing HDAC1 expression.
Collapse
Affiliation(s)
- Qiannan Zhang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Junting Dai
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yongzhong Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Miao Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
2
|
Bevilacqua A, Li Z, Ho P. Metabolic dynamics instructs CD8
+
T cell differentiation and functions. Eur J Immunol 2022; 52:541-549. [PMID: 35253907 PMCID: PMC9314626 DOI: 10.1002/eji.202149486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
Cytotoxic CD8+ T cells are a key element of the adaptative immune system to protect the organism against infections and malignant cells. During their activation and response, T cells undergo different metabolic pathways to support their energetic needs according to their localization and function. However, it has also been recently appreciated that this metabolic reprogramming also directly supports T‐cell lineage differentiation. Accordingly, metabolic deficiencies and prolonged stress exposure can impact T‐cell differentiation and skew them into an exhausted state. Here, we review how metabolism defines CD8+ T‐cell differentiation and function. Moreover, we cover the principal metabolic dysregulation that promotes the exhausted phenotype under tumor or chronic virus conditions. Finally, we summarize recent strategies to reprogram impaired metabolic pathways to promote CD8+ T‐cell effector function and survival.
Collapse
Affiliation(s)
- Alessio Bevilacqua
- Department of Fundamental Oncology University of Lausanne Lausanne Switzerland
| | - Zhiyu Li
- Department of Fundamental Oncology University of Lausanne Lausanne Switzerland
- Department of Breast and Thyroid Surgery Renmin Hospital of Wuhan University Wuhan Hubei P. R. China
| | - Ping‐Chih Ho
- Department of Fundamental Oncology University of Lausanne Lausanne Switzerland
- Ludwig Institute for Cancer Research University of Lausanne Epalinges Switzerland
| |
Collapse
|
3
|
Guon TE, Chung HS. Moringa oleifera fruit induce apoptosis via reactive oxygen species-dependent activation of mitogen-activated protein kinases in human melanoma A2058 cells. Oncol Lett 2017; 14:1703-1710. [PMID: 28789398 DOI: 10.3892/ol.2017.6288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/09/2017] [Indexed: 01/18/2023] Open
Abstract
The present study was performed to determine the effect of Moringa oleifera fruit extract on the apoptosis of human melanoma A2058 cells. A2058 cells were treated for 72 h with Moringa oleifera fruit extract at 50-100 µg/ml, and cell viability with apoptotic changes was examined. The involvement of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) was examined. It was revealed that Moringa oleifera fruit extract significantly inhibited the cell viability and promoted apoptosis of A2058 cells in a concentration-dependent manner. Moringa oleifera fruit extract-treated A2058 cells exhibited increased activities of cleaved caspase-9 and caspase-3. It also caused an enhancement of MAPK phosphorylation and ROS production. The pro-apoptotic activity of Moringa oleifera fruit extract was significantly reversed by pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125, extracellular-signal-regulated kinase (ERK) inhibitor PD98058 or ROS inhibitor N-acetyl-L-cysteine. Taken together, Moringa oleifera fruit extract is effective in inducing mitochondrial apoptosis of A2058 cells, which is mediated through induction of ROS formation, and JNK and ERK activation. Moringa oleifera fruit extract may thus have therapeutic benefits for human melanoma A2058 cells.
Collapse
Affiliation(s)
- Tae Eun Guon
- Department of Food and Nutrition, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Ha Sook Chung
- Department of Food and Nutrition, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
4
|
Dong Z, Tao X, Fu X, Wang H, Wang D, Zhang T. Protective effects of Purendan superfine powder on retinal neuron apoptosis in a rat model of type 2 diabetes mellitus. Neural Regen Res 2015; 7:202-6. [PMID: 25767500 PMCID: PMC4353115 DOI: 10.3969/j.issn.1673-5374.2012.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/10/2011] [Indexed: 01/03/2023] Open
Abstract
This study sought to investigate the effects of Purendan superfine powder comprised of Momordica charantia, Radix Ginseng, and Radix Salviae Miltiorrhiae on neuronal apoptosis and expression of bcl-2, bax, and caspase-3, which are retinal apoptosis-associated factors in rats with diabetes mellitus induced by continuous intraperitoneal injection of streptozotocin. The results showed that Purendan superfine powder could upregulate the expression of bcl-2 protein and mRNA, and downregulate the expression of bax and caspase-3 in the retina of diabetes mellitus rats. In addition, Purendan superfine powder was shown to reduce the number of apoptotic neurons. Our experimental findings indicate that Purendan superfine powder can inhibit neuronal apoptosis in the retina of diabetes mellitus rats and has protective effects on diabetic retinopathy.
Collapse
Affiliation(s)
- Zhijun Dong
- Department of Ophthalmology, Chengde Medical College Affiliated Hospital, Chengde 067000, Hebei Province, China
| | - Xiangyi Tao
- Department of Ophthalmology, Chengde Medical College Affiliated Hospital, Chengde 067000, Hebei Province, China
| | - Xiaoxiao Fu
- Department of Ophthalmology, Chengde Medical College Affiliated Hospital, Chengde 067000, Hebei Province, China
| | - Haibin Wang
- Department of Ophthalmology, Chengde Medical College Affiliated Hospital, Chengde 067000, Hebei Province, China
| | - Donghua Wang
- Department of Ophthalmology, Chengde Medical College Affiliated Hospital, Chengde 067000, Hebei Province, China
| | - Tiemin Zhang
- Department of Ophthalmology, Chengde Medical College Affiliated Hospital, Chengde 067000, Hebei Province, China
| |
Collapse
|
5
|
Wensveen FM, van Gisbergen KPJM, Eldering E. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes. Immunol Rev 2013; 249:84-103. [PMID: 22889217 DOI: 10.1111/j.1600-065x.2012.01156.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
6
|
Lowman XH, McDonnell MA, Kosloske A, Odumade OA, Jenness C, Karim CB, Jemmerson R, Kelekar A. The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol Cell 2011; 40:823-33. [PMID: 21145489 DOI: 10.1016/j.molcel.2010.11.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/20/2010] [Accepted: 10/05/2010] [Indexed: 01/11/2023]
Abstract
The BH3-only protein, Noxa, is induced in response to apoptotic stimuli, such as DNA damage, hypoxia, and proteasome inhibition in most human cells. Noxa is constitutively expressed in proliferating cells of hematopoietic lineage and required for apoptosis in response to glucose stress. We show that Noxa is phosphorylated on a serine residue (S(13)) in the presence of glucose. Phosphorylation promotes its cytosolic sequestration and suppresses its apoptotic function. We identify Cdk5 as the Noxa kinase and show that Cdk5 knockdown or expression of a Noxa S(13) to A mutant increases sensitivity to glucose starvation, confirming that the phosphorylation is protective. Both glucose deprivation and Cdk5 inhibition promote apoptosis by dephosphorylating Noxa. Paradoxically, Noxa stimulates glucose consumption and may enhance glucose turnover via the pentose phosphate pathway rather than through glycolysis. We propose that Noxa plays both growth-promoting and proapoptotic roles in hematopoietic cancers with phospho-S(13) as the glucose-sensitive toggle switch controlling these opposing functions.
Collapse
Affiliation(s)
- Xazmin H Lowman
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wensveen FM, van Gisbergen KPJM, Derks IAM, Gerlach C, Schumacher TN, van Lier RAW, Eldering E. Apoptosis threshold set by Noxa and Mcl-1 after T cell activation regulates competitive selection of high-affinity clones. Immunity 2010; 32:754-65. [PMID: 20620942 DOI: 10.1016/j.immuni.2010.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/24/2010] [Accepted: 06/02/2010] [Indexed: 11/26/2022]
Abstract
The adaptive immune system generates protective T cell responses via a poorly understood selection mechanism that favors expansion of clones with optimal affinity for antigen. Here we showed that upon T cell activation, the proapoptotic molecule Noxa (encoded by Pmaip1) and its antagonist Mcl-1 were induced. During an acute immune response against influenza or ovalbumin, Pmaip1(-/-) effector T cells displayed decreased antigen affinity and functionality. Molecular analysis of influenza-specific T cells revealed persistence of many subdominant clones in the Pmaip1(-/-) effector pool. When competing for low-affinity antigen, Pmaip1(-/-) TCR transgenic T cells had a survival advantage in vitro, resulting in increased numbers of effector cells in vivo. Mcl-1 protein stability was controlled by T cell receptor (TCR) affinity-dependent interleukin-2 signaling. These results establish a role for apoptosis early during T cell expansion, based on antigen-driven competition and survival of the fittest T cells.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Experimental Immunology, Academical Medical Center, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang L, Luo HS, Xia H. Sodium butyrate induces human colon carcinoma HT-29 cell apoptosis through a mitochondrial pathway. J Int Med Res 2009; 37:803-11. [PMID: 19589263 DOI: 10.1177/147323000903700323] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some tumours respond favourably to tumour necrosis factor-alpha (TNF-alpha). Despite this preferential sensitivity, resistance to TNF-alpha remains a clinical problem and more interest is now being focused on finding compounds that induce apoptosis through other pathways. Sodium butyrate (NaBt) has anti-tumour effects on colon cancer cells, inhibiting cell growth and promoting differentiation and apoptosis. In this study we investigated whether NaBt induced apoptosis in the human colon cancer cell line HT-29 and examined the intracellular mechanisms involved. Pre-incubation of cells with NaBt significantly increased apoptosis as measured by fluorescence activated cell sorter analysis and mitochondrial membrane potential determination. This effect could be blocked with the caspase inhibitors, z-VAD-fmk (pan-caspase inhibitor), z-DEVD-fmk (caspase-3 inhibitor) and z-LEHD-fmk (caspase-9 inhibitor), but not with z-IETD-fmk (caspase-8 inhibitor). Enhancement of caspase-3 and caspase-9 activities suggests that NaBt induces apoptosis via mitochondrial pathways not involving TNF-alpha.
Collapse
Affiliation(s)
- L Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | |
Collapse
|
9
|
Abreu JRF, Grabiec AM, Krausz S, Spijker R, Burakowski T, Maslinski W, Eldering E, Tak PP, Reedquist KA. The presumed hyporesponsive behavior of rheumatoid arthritis T lymphocytes can be attributed to spontaneous ex vivo apoptosis rather than defects in T cell receptor signaling. THE JOURNAL OF IMMUNOLOGY 2009; 183:621-30. [PMID: 19525395 DOI: 10.4049/jimmunol.0803278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Genetic associations and the clinical success of compounds targeting TCR costimulatory proteins suggest an active role for TCR signaling in the initiation and perpetuation of rheumatoid arthritis (RA). Paradoxically, T cells isolated from affected joints in RA show impaired proliferative and cytokine responses following stimulation with mitogens and recall Ags attributed in part to chronic T cell exposure to oxidative stress and inflammatory cytokines. Therefore, it is uncertain how local autoreactive TCR signaling contributes to pathology in established RA. Using single-cell analysis, we show that in contrast to results obtained in bulk culture assays, T cells from the synovial fluid of RA patients proliferate and produce cytokines (IL-2, TNF-alpha, and IFN-gamma) as efficiently, if not more so, than T cells isolated from healthy donors and RA patient peripheral blood following TCR/CD28 stimulation. RA synovial fluid T cell hyporesponsiveness observed in bulk cultures can be attributed to spontaneous apoptosis ex vivo, which is associated with altered ratios of proapoptotic Noxa and anti-apoptotic Mcl-1 expression. The absence of RA synovial T cell proliferation and cytokine production in situ, despite the capacity of these cells to support productive TCR signaling, suggests that T cells contribute to local pathology in established RA by TCR-independent mechanisms.
Collapse
Affiliation(s)
- Joana R F Abreu
- Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Huntington ND, Labi V, Cumano A, Vieira P, Strasser A, Villunger A, Di Santo JP, Alves NL. Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim sustains B lymphopoiesis in the absence of IL-7. Int Immunol 2009; 21:715-25. [PMID: 19454543 DOI: 10.1093/intimm/dxp043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IL-7 is pivotal for B cell development. Proteins of the Bcl-2 family are essential regulators of lymphocyte survival. Particularly, the pro-apoptotic BH3-only members Bim and Puma mediate lymphocyte apoptosis provoked by cytokine deprivation. Herein, we addressed whether the absence of Bim or Puma within the hematopoietic compartment could bypass the requirement for IL-7-driven B cell development in adult mice. We found that deficiency of Bim, but not Puma, partially rescued B cell development in the absence of IL-7. The numbers of both sIgM(-) and sIgM(+) B cells were markedly increased in the bone marrow of recipients lacking IL-7 upon reconstitution with Bim-deficient hematopoietic progenitors, compared with their control or Puma-deficient counterparts. The augmentation of B cell lymphopoiesis in the absence of Bim was reflected in the mature peripheral compartment by an increase in both the number of immature and mature B cells in the spleen and in the circulating IgM levels. Bim-deficient B cells were also increased in IL-7-sufficient recipients suggesting that peripheral B cells homeostasis is governed by a Bim-dependent and IL-7-independent mechanism. Our data highlight the role of Bim as a key regulator of cell survival during B lymphocyte development in vivo.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Cytokines and Lymphoid Development Unit, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Rapidly proliferating CD44hi peripheral T cells undergo apoptosis and delay posttransplantation T-cell reconstitution after allogeneic bone marrow transplantation. Blood 2008; 112:4755-64. [PMID: 18815289 DOI: 10.1182/blood-2008-02-142737] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Delayed T-cell recovery is an important complication of allogeneic bone marrow transplantation (BMT). We demonstrate in murine models that donor BM-derived T cells display increased apoptosis in recipients of allogeneic BMT with or without GVHD. Although this apoptosis was associated with a loss of Bcl-2 and Bcl-X(L) expression, allogeneic recipients of donor BM deficient in Fas-, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- or Bax-, or BM-overexpressing Bcl-2 or Akt showed no decrease in apoptosis of peripheral donor-derived T cells. CD44 expression was associated with an increased percentage of BM-derived apoptotic CD4(+) and CD8(+) T cells. Transplantation of RAG-2-eGFP-transgenic BM revealed that proliferating eGFP(lo)CD44(hi) donor BM-derived mature T cells were more likely to undergo to apoptosis than nondivided eGFP(hi)CD44(lo) recent thymic emigrants in the periphery. Finally, experiments using carboxyfluorescein succinimidyl ester-labeled T cells adoptively transferred into irradiated syngeneic hosts revealed that rapid spontaneous proliferation (as opposed to slow homeostatic proliferation) and acquisition of a CD44(hi) phenotype was associated with increased apoptosis in T cells. We conclude that apoptosis of newly generated donor-derived peripheral T cells after an allogeneic BMT contributes to delayed T-cell reconstitution and is associated with CD44 expression and rapid spontaneous proliferation by donor BM-derived T cells.
Collapse
|
12
|
Pereira WF, Guillermo LVC, Ribeiro-Gomes FL, Lopes MF. Inhibition of caspase-8 activity reduces IFN-gamma expression by T cells from Leishmania major infection. AN ACAD BRAS CIENC 2008; 80:129-36. [PMID: 18345381 DOI: 10.1590/s0001-37652008000100008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 08/15/2007] [Indexed: 12/30/2022] Open
Abstract
Following infection with Leishmania major, T cell activation and apoptosis can be detected in draining lymph nodes of C57BL/6-infected mice. We investigated the mechanisms involved in apoptosis and cytokine expression following T cell activation. After two weeks of infection, apoptotic T cells were not detected in draining lymph nodes but activation with anti-CD3 induced apoptosis in both CD4 and CD8 T cells. Treatment with anti-Fas Ligand, caspase-8 or caspase- 9 inhibitors did not block activation-induced T-cell death. We also investigated whether the blockade of caspase-8 activity would affect the expression of type-1 or type-2 cytokines. At early stages of infection, both CD4 and CD8 T cells expressed IFN-gamma upon activation. Treatment with the caspase-8 inhibitor zIETD-fmk (benzyl-oxycarbonyl-Ile- Glu(OMe)-Thr-Asp(OMe)-fluoromethyl ketone) reduced the proportion of CD8 T cells and IFN-gamma expression in both CD4 and CD8 T cells. We conclude that a non apoptotic role of caspase-8 activity may be required for T cell-mediated type-1 responses during L. major infection.
Collapse
Affiliation(s)
- Wânia F Pereira
- Centro de Ciências da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
13
|
Allard D, Figg N, Bennett MR, Littlewood TD. Akt regulates the survival of vascular smooth muscle cells via inhibition of FoxO3a and GSK3. J Biol Chem 2008; 283:19739-47. [PMID: 18458087 DOI: 10.1074/jbc.m710098200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis of vascular smooth muscle cells (VSMCs) may lead to atherosclerotic plaque instability and rupture, resulting in myocardial infarction, stroke, and sudden death. However, the molecular mechanisms mediating survival of VSMCs in atherosclerotic plaques remain unknown. Although plaque VSMCs exhibit increased susceptibility to apoptosis and reduced expression of the IGF1 receptor (IGF1R) when compared with normal VSMCs, a causative effect has not been established. Here we show that increased expression of the IGF1R can rescue plaque VSMCs from oxidative stress-induced apoptosis, demonstrating that IGF-1 signaling is a critical regulator of VSMC survival. Akt mediates the majority of the IGF1R survival signaling, and ectopic activation of Akt was sufficient to protect VSMCs in vitro. Both IGF1R and phospho-Akt expression were reduced in human plaque (intimal) VSMCs when compared with medial VSMCs, suggesting that Akt mediates survival signaling in atherosclerosis. Importantly, downstream targets of Akt were identified that mediate its protective effect as inhibition of FoxO3a or GSK3 by Akt-dependent phosphorylation protected VSMCs in vitro. We conclude that Akt and its downstream targets FoxO3a and GSK3 regulate a survival pathway in VSMCs and that their deregulation due to a reduction of IGF1R signaling may promote apoptosis in atherosclerosis.
Collapse
Affiliation(s)
- David Allard
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | | | | | | |
Collapse
|
14
|
BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma. Blood 2008; 111:5152-62. [PMID: 18354037 DOI: 10.1182/blood-2007-10-116889] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The use of arsenic trioxide (ATO) to treat multiple myeloma (MM) is supported by preclinical studies as well as several phase 2 studies, but the precise mechanism(s) of action of ATO has not been completely elucidated. We used gene expression profiling to determine the regulation of apoptosis-related genes by ATO in 4 MM cell lines and then focused on Bcl-2 family genes. ATO induced up-regulation of 3 proapoptotic BH3-only proteins (Noxa, Bmf, and Puma) and down-regulation of 2 antiapoptotic proteins Mcl-1 and Bcl-X(L). Coimmunoprecipitation demonstrated that Noxa and Puma bind Mcl-1 to release Bak and Bim within 6 hours of ATO addition. Bak and Bim are also released from Bcl-X(L). Silencing of Bmf, Noxa, and Bim significantly protected cells from ATO-induced apoptosis, while Puma silencing had no effect. Consistent with a role for Noxa inhibition of Mcl-1, the Bad-mimetic ABT-737 synergized with ATO in the killing of 2 MM lines. Finally, Noxa expression was enhanced by GSH depletion and inhibited by increasing GSH levels in the cells. Understanding the pattern of BH3-only protein response should aid in the rational design of arsenic-containing regimens.
Collapse
|
15
|
Ploner C, Rainer J, Niederegger H, Eduardoff M, Villunger A, Geley S, Kofler R. The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia 2008; 22:370-7. [PMID: 18046449 PMCID: PMC4950962 DOI: 10.1038/sj.leu.2405039] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoid (GC)-induced apoptosis is essential in the treatment of acute lymphoblastic leukemia (ALL) and related malignancies. Pro- and anti-apoptotic members of the BCL2 family control many forms of apoptotic cell death, but the extent to which this survival 'rheostat' is involved in the beneficial effects of GC therapy is not understood. We performed systematic analyses of expression, GC regulation and function of BCL2 molecules in primary ALL lymphoblasts and a corresponding in vitro model. Affymetrix-based expression profiling revealed that the response included regulations of pro-apoptotic and, surprisingly, anti-apoptotic BCL2 family members, and varied among patients, but was dominated by induction of the BH3-only molecules BMF and BCL2L11/Bim and repression of PMAIP1/Noxa. Conditional lentiviral gene overexpression and knock-down by RNA interference in the CCRF-CEM model revealed that induction of Bim, and to a lesser extent that of BMF, was required and sufficient for apoptosis. Although anti-apoptotic BCL2 members were not regulated consistently by GC in the various systems, their overexpression delayed, whereas their knock-down accelerated, GC-induced cell death. Thus, the combined clinical and experimental data suggest that GCs induce both pro- and anti-apoptotic BCL2 family member-dependent pathways, with the outcome depending on cellular context and additional signals feeding into the BCL2 rheostat.
Collapse
Affiliation(s)
- C Ploner
- Division Molecular Pathophysiology, Department Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
16
|
Kovalchuk AL, duBois W, Mushinski E, McNeil NE, Hirt C, Qi CF, Li Z, Janz S, Honjo T, Muramatsu M, Ried T, Behrens T, Potter M. AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements. ACTA ACUST UNITED AC 2007; 204:2989-3001. [PMID: 17998390 PMCID: PMC2118515 DOI: 10.1084/jem.20070882] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation-induced cytidine deaminase (AID) is required for immunoglobulin (Ig) class switch recombination and somatic hypermutation, and has also been implicated in translocations between Ig switch regions and c-Myc in plasma cell tumors in mice. We asked if AID is required for accelerated tumor development in pristane-treated Bcl-xL transgenic BALB/c mice deficient in AID (pBxAicda−/−). pBxAicda−/− mice developed tumors with a lower frequency (24 vs. 62%) and a longer mean latency (108 vs. 36 d) than AID-sufficient mice. The tumors appeared in oil granuloma tissue and did not form ascites. By interphase fluorescence in situ hybridization, six out of nine pBxAicda−/− primary tumors had T(12;15) and one had T(6;15) chromosomal translocations. Two tumors were transplantable and established as stable cell lines. Molecular and cytogenetic analyses showed that one had an unusual unbalanced T(12;15) translocation, with IgH Cμ and Pvt-1 oriented head to tail at the breakpoint, resulting in an elevated expression of c-Myc. In contrast, the second was T(12;15) negative, but had an elevated N-Myc expression caused by a paracentric inversion of chromosome 12. Thus, novel mechanisms juxtapose Ig and Myc-family genes in AID-deficient plasma cell tumors.
Collapse
Affiliation(s)
- Alexander L Kovalchuk
- Laboratory of Cancer Biology and Genetics, Cancer Genomics Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lopes MF, Guillermo LVC, Silva EM. Decoding caspase signaling in host immunity to the protozoan Trypanosoma cruzi. Trends Immunol 2007; 28:366-72. [PMID: 17625971 DOI: 10.1016/j.it.2007.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 05/29/2007] [Accepted: 06/20/2007] [Indexed: 12/31/2022]
Abstract
Caspases, a family of cysteinyl-aspartate-specific proteases, induce apoptosis but are also involved in signal transduction in live cells. Caspase activation and apoptosis in T lymphocytes occur following infection with parasites and might affect immune responses. Rapid progress has occurred in the development and testing of caspase inhibitors and other apoptosis blockers, which are potentially useful for treating diseases associated with the pathogenic effects of apoptosis. Pharmacological approaches and the use of genetically modified hosts can be combined in research strategies to understand how apoptosis and caspase signaling affect the immune system.
Collapse
Affiliation(s)
- Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| | | | | |
Collapse
|