1
|
Monsinjon T, Knigge T. Endocrine disrupters affect the immune system of fish: The example of the European seabass. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110303. [PMID: 40180203 DOI: 10.1016/j.fsi.2025.110303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
An organism's fitness critically relies on its immune system to provide protection against parasites and pathogens. The immune system has reached its highest complexity in vertebrates, combining the highly specific adaptive with the non-specific innate immunity. In vertebrates, a complex system of steroid hormones regulates major physiological functions comprising energy metabolism, growth, reproduction and immune system performance. This allows the organism to allocate available energy according to life-history traits and environmental conditions, thus maintaining homeostasis and survival of the individual and of the population. Immune system activation must take into account the developmental stage and the nutritional state of the organism. It should respond adequately to different pathogens, but should not overperform or consume all resources for other physiological functions. This important trade-off between immunity and reproduction is balanced by oestrogen. Many of the thousands of chemicals released by humans into the environment, so-called xenobiotics, have the ability to disrupt normal endocrine function. Such endocrine-disrupting chemicals have been demonstrated to impair reproductive functions and to be responsible for numerous diseases in humans and wild life. Given that oestrogens are established modulators of immune cell populations, exogenous oestrogens and oestrogen mimics can modulate immune functions in aquatic animals, such as fish, potentially affecting wildlife and aquaculture. This review highlights the interaction of xenoestrogens with fish immunity. It particularly focusses on the thymus, a major primary immune organ, in the European seabass, Dicentrarchus labrax an important species, both for fisheries and aquaculture.
Collapse
Affiliation(s)
- Tiphaine Monsinjon
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France.
| | - Thomas Knigge
- University of Le Havre Normandy, University of Reims Champagne-Ardenne, INERIS, Normandie Univ, FR CNRS 3730 SCALE, UMR I-02 SEBIO, F-76600, Le Havre, France
| |
Collapse
|
2
|
Lins MP, Dos Santos Reis MD. Age-Related Thymic Involution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:285-299. [PMID: 40067592 DOI: 10.1007/978-3-031-77921-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The age-related thymic involution has intrigued scientists since its first observations. This phenomenon is well-conserved across different species, but the reason why it exists is not clear since the thymus is a key organ in the immune system responsible for the maturation of immunocompetent T lymphocytes. As thymic function declines with age, it significantly affects the health of older individuals, leading to reduced responses to new pathogens, tumor cells, and vaccines. This impact was notably evident during the COVID-19 pandemic, where a substantial number of elderly individuals succumbed to the disease. This chapter explores the characteristics of age-related thymic involution, including new findings using recently developed technologies. We also highlight emerging research trends aimed at rejuvenating thymus function.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, MT, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Maria Danielma Dos Santos Reis
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, Brazil.
| |
Collapse
|
3
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
4
|
Oxford JS, Catchpole A, Mann A, Bell A, Noulin N, Gill D, Oxford JR, Gilbert A, Balasingam S. A Brief History of Human Challenge Studies (1900-2021) Emphasising the Virology, Regulatory and Ethical Requirements, Raison D'etre, Ethnography, Selection of Volunteers and Unit Design. Curr Top Microbiol Immunol 2024; 445:1-32. [PMID: 35704095 DOI: 10.1007/82_2022_253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Venetian quarantine 400 years ago was an important public health measure. Since 1900 this has been refined to include "challenge" or deliberate infection with pathogens be they viruses, bacteria, or parasites. Our focus is virology and ranges from the early experiments in Cuba with Yellow Fever Virus to the most widespread pathogen of our current times, COVID-19. The latter has so far caused over four million deaths worldwide and 190 million cases of the disease. Quarantine and challenge were also used to investigate the Spanish Influenza of 1918 which caused over 100 million deaths. We consider here the merits of the approach, that is the speeding up of knowledge in a practical sense leading to the more rapid licensing of vaccines and antimicrobials. At the core of quarantine and challenge initiatives is the design of the unit to allow safe confinement of the pathogen and protection of the staff. Most important though is the safety of volunteers. We can see now, as in 1900, that members of our society are prepared and willing to engage in these experiments for the public good. Our ethnology study, where the investigator observed the experiment from within the quarantine, gave us the first indication of changing attitudes amongst volunteers whilst in quarantine. These quarantine experiments, referred to as challenge studies, human infection studies, or "controlled human infection models" involve thousands of clinical samples taken over two to three weeks and can provide a wealth of immunological and molecular data on the infection itself and could allow the discovery of new targets for vaccines and therapeutics. The Yellow Fever studies from 121 years ago gave the impetus for development of a successful vaccine still used today whilst also uncovering the nature of the Yellow Fever agent, namely that it was a virus. We outline how carefully these experiments are approached and the necessity to have high quality units with self-contained air-flow along with extensive personal protective equipment for nursing and medical staff. Most important is the employment of highly trained scientific, medical and nursing staff. We face a future of emerging pathogens driven by the increasing global population, deforestation, climate change, antibiotic resistance and increased global travel. These emerging pathogens may be pathogens we currently are not aware of or have not caused outbreaks historically but could also be mutated forms of known pathogens including viruses such as influenza (H7N9, H5N1 etc.) and coronaviruses. This calls for challenge studies to be part of future pandemic preparedness as an additional tool to assist with the rapid development of broad-spectrum antimicrobials, immunomodulators and new vaccines.
Collapse
Affiliation(s)
- J S Oxford
- Blizzard Institute of Cell and Molecular Science, Queen Mary University of London, London, E1 2AT, UK
| | | | | | | | | | - D Gill
- Blizzard Institute of Cell and Molecular Science, Queen Mary University of London, London, E1 2AT, UK
| | - J R Oxford
- Inveresk Medical Practice, Edinburgh, E21 7BP, UK
| | | | | |
Collapse
|
5
|
Xu L, Wei C, Chen Y, Wu Y, Shou X, Chen W, Lu D, Sun H, Li W, Yu B, Wang X, Zhang X, Yu Y, Lei Z, Tang R, Zhu J, Li Y, Lu L, Zhou H, Zhou S, Su C, Chen X. IL-33 induces thymic involution-associated naive T cell aging and impairs host control of severe infection. Nat Commun 2022; 13:6881. [PMID: 36371464 PMCID: PMC9653498 DOI: 10.1038/s41467-022-34660-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Severe infection commonly results in immunosuppression, which leads to impaired pathogen clearance or increased secondary infection in both humans and animals. However, the exact mechanisms remain poorly understood. Here, we demonstrate that IL-33 results in immunosuppression by inducing thymic involution-associated naive T cell dysfunction with aberrant expression of aging-associated genes and impairs host control of infection in mouse disease models of schistosomiasis or sepsis. Furthermore, we illustrate that IL-33 triggers the excessive generation of medullary thymic epithelial cell (mTEC) IV (thymic tuft cells) in a Pou2f3-dependent manner, as a consequence, disturbs mTEC/cortical TEC (cTEC) compartment and causes thymic involution during severe infection. More importantly, IL-33 deficiency, the anti-IL-33 neutralizing antibody treatment, or IL-33 receptor ST2 deficient thymus transplantation rescues T cell immunity to better control infection in mice. Our findings not only uncover a link between severe infection-induced IL-33 and thymic involution-mediated naive T cell aging, but also suggest that targeting IL-33 or ST2 is a promising strategy to rejuvenate T cell immunity to better control severe infection.
Collapse
Affiliation(s)
- Lei Xu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Respiratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 P. R. China
| | - Chuan Wei
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Ying Chen
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Yue Wu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Xiaoli Shou
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Wenjie Chen
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Di Lu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Haoran Sun
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Wei Li
- grid.89957.3a0000 0000 9255 8984Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 P. R. China
| | - Beibei Yu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Xiaowei Wang
- grid.452511.6Department of Blood Transfusion, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008 P. R. China
| | - Xiaojun Zhang
- grid.452511.6Imaging Center, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008 P. R. China
| | - Yanxiong Yu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Zhigang Lei
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Rui Tang
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Jifeng Zhu
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Yalin Li
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Linrong Lu
- grid.13402.340000 0004 1759 700XInstitute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310058 P. R. China
| | - Hong Zhou
- grid.186775.a0000 0000 9490 772XDepartment of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032 P. R. China
| | - Sha Zhou
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Chuan Su
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| | - Xiaojun Chen
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China ,grid.89957.3a0000 0000 9255 8984Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166 P. R. China
| |
Collapse
|
6
|
Bichet C, Régis C, Gilot‐Fromont E, Cohas A. Variations in immune parameters with age in a wild rodent population and links with survival. Ecol Evol 2022; 12:e9094. [PMID: 35845372 PMCID: PMC9273568 DOI: 10.1002/ece3.9094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Recent findings suggest that immune functions do not unidirectionally deteriorate with age but that a potentially adaptive remodeling, where functions of the immune system get downregulated while others get upregulated with age could also occur. Scarce in wild populations, longitudinal studies are yet necessary to properly understand the patterns and consequences of age variations of the immune system in the wild. Meanwhile, it is challenging to understand if the observed variations in immune parameters with age are due to changes at the within-individual level or to selective (dis)appearance of individuals with peculiar immune phenotypes. Thanks to a long-term and longitudinal monitoring of a wild Alpine marmot population, we aimed to understand within- and between-individual variation in the immune phenotype with age, in order to improve our knowledge about the occurrence and the evolutionary consequences of such age variations in the wild. To do so, we recorded the age-specific leukocyte concentration and leukocyte profile in repeatedly sampled dominant individuals. We then tested whether the potential changes with age were attributable to within-individual variations and/or selective (dis)appearance. Finally, we investigated if the leukocyte concentration and profiles were correlated to the probability of death at a given age. The leukocyte concentration was stable with age, but the relative number of lymphocytes decreased, while the relative number of neutrophils increased, over the course of an individual's life. Moreover, between individuals of the same age, individuals with fewer lymphocytes but more neutrophils were more likely to die. Therefore, selective disappearance seems to play a role in the age variations of the immune parameters in this population. Further investigations linking age variations in immune phenotype to individual fitness are needed to understand whether remodeling of the immune system with age could or could not be adaptive.
Collapse
Affiliation(s)
- Coraline Bichet
- Centre d'Etudes Biologiques de ChizéCNRS‐La Rochelle UniversitéVilliers‐en‐BoisFrance
- Institut für Vogelforschung "Vogelwarte Helgoland" (Institute of Avian Research)WilhelmshavenGermany
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Corinne Régis
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
| | - Emmanuelle Gilot‐Fromont
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
- Université de Lyon, VetAgro SupMarcy‐l'EtoileFrance
| | - Aurélie Cohas
- UMR‐CNRS 5558, Laboratoire Biométrie et Biologie ÉvolutiveUniversité Claude Bernard Lyon 1VilleurbanneFrance
- Institut Universitaire de France (IUF)ParisFrance
| |
Collapse
|
7
|
Schmoele-Thoma B, Zareba AM, Jiang Q, Maddur MS, Danaf R, Mann A, Eze K, Fok-Seang J, Kabir G, Catchpole A, Scott DA, Gurtman AC, Jansen KU, Gruber WC, Dormitzer PR, Swanson KA. Vaccine Efficacy in Adults in a Respiratory Syncytial Virus Challenge Study. N Engl J Med 2022; 386:2377-2386. [PMID: 35731653 DOI: 10.1056/nejmoa2116154] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although human respiratory syncytial virus (RSV) is an important cause of illness and death in older adults, no RSV vaccine has been licensed. METHODS In a phase 2a study, we randomly assigned healthy adults (18 to 50 years of age), in a 1:1 ratio, to receive a single intramuscular injection of either bivalent prefusion F (RSVpreF) vaccine or placebo. Approximately 28 days after injection, participants were inoculated intranasally with the RSV A Memphis 37b challenge virus and observed for 12 days. The per-protocol prespecified primary end points were the following: reverse-transcriptase-quantitative polymerase-chain-reaction (RT-qPCR)-confirmed detectable RSV infection on at least 2 consecutive days with at least one clinical symptom of any grade from two categories or at least one grade 2 symptom from any category, the total symptom score from day 1 to discharge, and the area under the curve (AUC) for the RSV viral load in nasal-wash samples measured by means of RT-qPCR from day 2 after challenge to discharge. In addition, we assessed immunogenicity and safety. RESULTS After participants were inoculated with the challenge virus, vaccine efficacy of 86.7% (95% CI, 53.8 to 96.5) was observed for symptomatic RSV infection confirmed by any detectable viral RNA on at least 2 consecutive days. The median AUC for the RSV viral load (hours × log10 copies per milliliter) as measured by RT-qPCR assay was 0.0 (interquartile range, 0.0 to 19.0) in the vaccine group and 96.7 (interquartile range, 0.0 to 675.3) in the placebo group. The geometric mean factor increase from baseline in RSV A-neutralizing titers 28 days after injection was 20.5 (95% CI, 16.6 to 25.3) in the vaccine group and 1.1 (95% CI, 0.9 to 1.3) in the placebo group. More local injection-site pain was noted in the vaccine group than in the placebo group. No serious adverse events were observed in either group. CONCLUSIONS RSVpreF vaccine was effective against symptomatic RSV infection and viral shedding. No evident safety concerns were identified. These findings provide support for further evaluation of RSVpreF vaccine in a phase 3 efficacy study. (Funded by Pfizer; EudraCT number, 2020-003887-21; ClinicalTrials.gov number, NCT04785612.).
Collapse
Affiliation(s)
- Beate Schmoele-Thoma
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Agnieszka M Zareba
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Qin Jiang
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Mohan S Maddur
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Rana Danaf
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Alex Mann
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Kingsley Eze
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Juin Fok-Seang
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Golam Kabir
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Andrew Catchpole
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Daniel A Scott
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Alejandra C Gurtman
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Kathrin U Jansen
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - William C Gruber
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Philip R Dormitzer
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| | - Kena A Swanson
- From Vaccine Research and Development, Pfizer Pharma, Berlin (B.S.-T.); Vaccine Research and Development, Pfizer, Collegeville, PA (A.M.Z., Q.J., D.A.S.); Vaccine Research and Development, Pfizer, Pearl River, NY (M.S.M., A.C.G., K.U.J., W.C.G., P.R.D., K.A.S.); and hVIVO, London (R.D., A.M., K.E., J.F.-S., G.K., A.C.)
| |
Collapse
|
8
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
9
|
Roast MJ, Hidalgo Aranzamendi N, Teunissen N, Fan M, Verhulst S, Peters A. No Evidence for Constitutive Innate Immune Senescence in a Longitudinal Study of a Wild Bird. Physiol Biochem Zool 2021; 95:54-65. [PMID: 34870562 DOI: 10.1086/717937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAging is associated with declines in physiological performance; declining immune defenses particularly could have consequences for age-related fitness and survival. In aging vertebrates, adaptive (memory-based) immune responses typically become impaired, innate (nonspecific) responses undergo lesser declines, and inflammation increases. Longitudinal studies of immune functions in wild animals are rare, yet they are needed to understand immunosenescence under evolutionarily relevant conditions. Using longitudinal data from a tropical passerine (Malurus coronatus) population, we investigate how population trends emerge from within-individual changes and between-individual heterogeneity (e.g., selective disappearance) in immune status. We quantified constitutive immune indexes (haptoglobin [inflammation associated], natural antibodies, complement [lytic] activity, and heterophil-lymphocyte ratio; n=505-631) in individuals sampled one to seven times over 5 yr. Unexpectedly, longitudinal analyses showed no age-related change within individuals in any immune index, despite sufficient power to detect within-individual change. Between individuals, we found age-related declines in natural antibodies and increases in heterophil-lymphocyte ratios. However, selective disappearance could not adequately explain between-individual age effects, and longitudinal models could not explain our data better than cross-sectional analyses. The lack of clear within-individual immunosenescence is itself notable. Persistent levels of haptoglobin, complement activity, and natural antibodies into old age suggests that these immune components are maintained, potentially with adaptive significance.
Collapse
|
10
|
Shirakawa K, Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells 2021; 10:cells10092435. [PMID: 34572084 PMCID: PMC8464832 DOI: 10.3390/cells10092435] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Although advances in preventive medicine have greatly improved prognosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. This clearly indicates that there remain residual cardiovascular risks that have not been targeted by conventional therapies. The results of multiple animal studies and clinical trials clearly indicate that inflammation is the most important residual risk and a potential target for CVD prevention. The immune cell network is intricately regulated to maintain homeostasis. Ageing associated changes to the immune system occurs in both innate and adaptive immune cells, however T cells are most susceptible to this process. T-cell changes due to thymic degeneration and homeostatic proliferation, metabolic abnormalities, telomere length shortening, and epigenetic changes associated with aging and obesity may not only reduce normal immune function, but also induce inflammatory tendencies, a process referred to as immunosenescence. Since the disruption of biological homeostasis by T cell immunosenescence is closely related to the development and progression of CVD via inflammation, senescent T cells are attracting attention as a new therapeutic target. In this review, we discuss the relationship between CVD and T cell immunosenescence associated with aging and obesity.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 1138421, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 1608582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
11
|
Kernen L, Rieder J, Duus A, Holbech H, Segner H, Bailey C. Thymus development in the zebrafish (Danio rerio) from an ecoimmunology perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:805-819. [PMID: 33306886 DOI: 10.1002/jez.2435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023]
Abstract
The thymus is present in all gnathostome vertebrates and is an essential organ for the adaptive immune system via the generation of functional mature T-cells. Over the life span of mammals, the thymus undergoes morphological and functional alterations, including an age-related involution, which in humans starts in early life. Life history tradeoffs have been suggested as possible reasons for thymus involution. While in teleost fish, only a few studies have investigated alterations of thymus structure and function over different life stages, resulting in a fragmented database. Here, we investigated the thymus growth of zebrafish (Danio rerio) from early life, throughout puberty and reproductive stage, up to 1-year-old. We assessed thymus growth by histological and morphometric analyses and thymocyte numbers. Thymus function was assessed by measuring the transcripts of the thymocyte marker genes, ikaros, tcrα, and tcrδ. Additionally, we analyzed gonad maturity and tail homogenate vitellogenin concentrations to align thymus status with the status of the reproductive system. Our results showed that the zebrafish thymus, in contrast to the human thymus, grew strongly during early life and puberty but started to undergo involution when the fish reached the reproductive age. The involution was characterized by reduced thymus area and thymocyte number, altered histoarchitecture, and decreasing thymocyte marker gene transcript levels. Our findings suggest that age-related changes of the zebrafish thymus do exist and could be partly explained in terms of resource tradeoffs, but also in terms of the ontogenetically late development of a functional adaptive immune system in teleosts.
Collapse
Affiliation(s)
- Larissa Kernen
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Jessica Rieder
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Annette Duus
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Christyn Bailey
- Fish Immunology and Pathology Group, Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| |
Collapse
|
12
|
Razali N, Hohjoh H, Inazumi T, Maharjan BD, Nakagawa K, Konishi M, Sugimoto Y, Hasegawa H. Induced Prostanoid Synthesis Regulates the Balance between Th1- and Th2-Producing Inflammatory Cytokines in the Thymus of Diet-Restricted Mice. Biol Pharm Bull 2020; 43:649-662. [PMID: 32238706 DOI: 10.1248/bpb.b19-00838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple external and internal factors have been reported to induce thymic involution. Involution involves dramatic reduction in size and function of the thymus, leading to various immunodeficiency-related disorders. Therefore, clarifying and manipulating molecular mechanisms governing thymic involution are clinically important, although only a few studies have dealt with this issue. In the present study, we investigated the molecular mechanisms underlying thymic involution using a murine acute diet-restriction model. Gene expression analyses indicated that the expression of T helper 1 (Th1)-producing cytokines, namely interferon-γ and interleukin (IL)-2, was down-regulated, while that of Th2-producing IL-5, IL-6, IL-10 and IL-13 was up-regulated, suggesting that acute diet-restriction regulates the polarization of naïve T cells to a Th2-like phenotype during thymic involution. mRNAs for prostanoid biosynthetic enzymes were up-regulated by acute diet-restriction. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses detected the increased production of prostanoids, particularly prostaglandin D2 and thromboxane B2, a metabolite of thromboxane A2, in the diet-restricted thymus. Administration of non-steroidal anti-inflammatory drugs, namely aspirin and etodolac, to inhibit prostanoid synthesis suppressed the biased expression of Th1- and Th2-cytokines as well as molecular markers of Th1 and Th2 cells in the diet-restricted thymus, without affecting the reduction of thymus size. In vitro stimulation of thymocytes with phorbol myristate acetate (PMA)/ionomycin confirmed the polarization of thymocytes from diet-restricted mice toward Th2 cells. These results indicated that the induced production of prostanoids during diet-restriction-induced thymic involution is involved in the polarization of naïve T cells in the thymus.
Collapse
Affiliation(s)
| | - Hirofumi Hohjoh
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | - Kimie Nakagawa
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| | | | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | |
Collapse
|
13
|
Cowan JE, Takahama Y, Bhandoola A, Ohigashi I. Postnatal Involution and Counter-Involution of the Thymus. Front Immunol 2020; 11:897. [PMID: 32477366 PMCID: PMC7235445 DOI: 10.3389/fimmu.2020.00897] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022] Open
Abstract
Thymus involution occurs in all vertebrates. It is thought to impact on immune responses in the aged, and in other clinical circumstances such as bone marrow transplantation. Determinants of thymus growth and size are beginning to be identified. Ectopic expression of factors like cyclin D1 and Myc in thymic epithelial cells (TEC)s results in considerable increase in thymus size. These models provide useful experimental tools that allow thymus function to be understood. In future, understanding TEC-specific controllers of growth will provide new approaches to thymus regeneration.
Collapse
Affiliation(s)
- Jennifer E Cowan
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| |
Collapse
|
14
|
Costa Del Amo P, Debebe B, Razavi-Mohseni M, Nakaoka S, Worth A, Wallace D, Beverley P, Macallan D, Asquith B. The Rules of Human T Cell Fate in vivo. Front Immunol 2020; 11:573. [PMID: 32322253 PMCID: PMC7156550 DOI: 10.3389/fimmu.2020.00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/12/2020] [Indexed: 12/05/2022] Open
Abstract
The processes governing lymphocyte fate (division, differentiation, and death), are typically assumed to be independent of cell age. This assumption has been challenged by a series of elegant studies which clearly show that, for murine cells in vitro, lymphocyte fate is age-dependent and that younger cells (i.e., cells which have recently divided) are less likely to divide or die. Here we investigate whether the same rules determine human T cell fate in vivo. We combined data from in vivo stable isotope labeling in healthy humans with stochastic, agent-based mathematical modeling. We show firstly that the choice of model paradigm has a large impact on parameter estimates obtained using stable isotope labeling i.e., different models fitted to the same data can yield very different estimates of T cell lifespan. Secondly, we found no evidence in humans in vivo to support the model in which younger T cells are less likely to divide or die. This age-dependent model never provided the best description of isotope labeling; this was true for naïve and memory, CD4+ and CD8+ T cells. Furthermore, this age-dependent model also failed to predict an independent data set in which the link between division and death was explored using Annexin V and deuterated glucose. In contrast, the age-independent model provided the best description of both naïve and memory T cell dynamics and was also able to predict the independent dataset.
Collapse
Affiliation(s)
- Pedro Costa Del Amo
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Bisrat Debebe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Shinji Nakaoka
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Andrew Worth
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Diana Wallace
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Peter Beverley
- TB Research Centre, National Heart and Lung Research Institute, Imperial College London, London, United Kingdom
| | - Derek Macallan
- Institute for Infection and Immunity, St. George's Hospital, University of London, London, United Kingdom
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Barbouti A, Evangelou K, Pateras IS, Papoudou-Bai A, Patereli A, Stefanaki K, Rontogianni D, Muñoz-Espín D, Kanavaros P, Gorgoulis VG. In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution. Mech Ageing Dev 2019; 177:88-90. [PMID: 29490231 DOI: 10.1016/j.mad.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 02/02/2023]
Abstract
Cellular senescence, an age-related process in response to damage and stress, also occurs during normal development and adult life. The thymus is a central lymphoepithelial organ of the immune system that exhibits age-related changes termed thymic involution. Since the mechanisms regulating thymic involution are still not well elucidated, we questioned whether cellular senescence is implicated in this process. We demonstrate, for the first time in situ, that cellular senescence occurs during human thymic involution using SenTraGor™, a novel chemical compound that is applicable in archival tissue material, providing thus further insights in thymus histophysiology.
Collapse
Affiliation(s)
- Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Konstantinos Evangelou
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece; Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Amalia Patereli
- Department of Pathology, Agia Sophia Hospital, Athens, Greece
| | | | - Dimitra Rontogianni
- Department of Anatomic Pathology, Evangelismos General Hospital, University of Athens, Athens, Greece
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Programme, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
16
|
Conte M, Martucci M, Sandri M, Franceschi C, Salvioli S. The Dual Role of the Pervasive "Fattish" Tissue Remodeling With Age. Front Endocrinol (Lausanne) 2019; 10:114. [PMID: 30863366 PMCID: PMC6400104 DOI: 10.3389/fendo.2019.00114] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Human aging is characterized by dramatic changes in body mass composition that include a general increase of the total fat mass. Within the fat mass, a change in the proportions of adipose tissues also occurs with aging, affecting body metabolism, and playing a central role in many chronic diseases, including insulin resistance, obesity, cardiovascular diseases, and type II diabetes. In mammals, fat accumulates as white (WAT) and brown (BAT) adipose tissue, which differ both in morphology and function. While WAT is involved in lipid storage and immuno-endocrine responses, BAT is aimed at generating heat. With advancing age BAT declines, while WAT increases reaching the maximum peak by early old age and changes its distribution toward a higher proportion of visceral WAT. However, lipids tend to accumulate also within lipid droplets (LDs) in non-adipose tissues, including muscle, liver, and heart. The excess of such ectopic lipid deposition and the alteration of LD homeostasis contribute to the pathogenesis of the above-mentioned age-related diseases. It is not clear why age-associated tissue remodeling seems to lean toward lipid deposition as a "default program." However, it can be noted that such remodeling is not inevitably detrimental. In fact, such a programmed redistribution of fat throughout life could be considered physiological and even protective, in particular at extreme old age. In this regard, it has to be considered that an excessive decrease of subcutaneous peripheral fat is associated with a pro-inflammatory status, and a decrease of LD is associated with lipotoxicity leading to an increased risk of insulin resistance, type II diabetes and cardiovascular diseases. At variance, a balanced rate of fat content and distribution has beneficial effects for health and metabolic homeostasis, positively affecting longevity. In this review, we will summarize the present knowledge on the mechanisms of the age-related changes in lipid distribution and we will discuss how fat mass negatively or positively impacts on human health and longevity.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Bologna, Italy
- *Correspondence: Maria Conte
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Abstract
Variation in protein expression is a feature of all cell populations. Using T cell subsets as a proof-of-concept, Lu et al. (2016) develop a framework for dissecting out the contributors to this cell-to-cell expression variation from high-parameter flow cytometry studies.
Collapse
Affiliation(s)
- Dean Franckaert
- Translational Immunology Laboratory, VIB, 3000 Leuven, Belgium; Department of Microbiology and Immunology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, 3000 Leuven, Belgium; Department of Microbiology and Immunology, KU Leuven - University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
18
|
Vibert J, Thomas-Vaslin V. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background. PLoS Comput Biol 2017; 13:e1005417. [PMID: 28288157 PMCID: PMC5367836 DOI: 10.1371/journal.pcbi.1005417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/27/2017] [Accepted: 02/16/2017] [Indexed: 12/03/2022] Open
Abstract
Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific “signature” that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures. We assess the impact of genetics and aging on immune system dynamics by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Understanding cell proliferation dynamics requires specific experimental methods and mathematical modelling. Our investigation is based upon single-cell multicolour flow cytometry analysis thereby revealing the active incorporation in DNA of a thymidine analogue during S phase after pulse-chase experiments in vivo, versus cell DNA content. A generic mathematical model that simulates the evolution of single cell behaviour during the experiment allows us to fit our data, to deduce proliferation rates and mean cell cycle phase durations in sub-populations. This reveals that T cell proliferation is constrained by genetic influences, declines with age, and is specific to cell differentiation stage, revealing a specific “signature” of cell proliferation. Our model is simple and flexible and can be used with other pulse/chase experiments.
Collapse
Affiliation(s)
- Julien Vibert
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Immunology-Immunopathology-Immunotherapy (I3) UMRS959; Paris, France
| | - Véronique Thomas-Vaslin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Immunology-Immunopathology-Immunotherapy (I3) UMRS959; Paris, France
- * E-mail:
| |
Collapse
|
19
|
Kugler DG, Flomerfelt FA, Costa DL, Laky K, Kamenyeva O, Mittelstadt PR, Gress RE, Rosshart SP, Rehermann B, Ashwell JD, Sher A, Jankovic D. Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. J Exp Med 2016; 213:3041-3056. [PMID: 27849554 PMCID: PMC5154934 DOI: 10.1084/jem.20151636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 08/05/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022] Open
Abstract
Kugler et al. show that systemic infection with Toxoplasma gondii triggers a long-term impairment in thymic function, which leads to an immunodeficient state reflected in decreased antimicrobial resistance. Because antigen-stimulated naive T cells either die as effectors or enter the activated/memory pool, continuous egress of new T lymphocytes from thymus is essential for maintenance of peripheral immune homeostasis. Unexpectedly, we found that systemic infection with the protozoan Toxoplasma gondii triggers not only a transient increase in activated CD4+ Th1 cells but also a persistent decrease in the size of the naive CD4+ T lymphocyte pool. This immune defect is associated with decreased thymic output and parasite-induced destruction of the thymic epithelium, as well as disruption of the overall architecture of that primary lymphoid organ. Importantly, the resulting quantitative and qualitative deficiency in naive CD4+ T cells leads to an immunocompromised state that both promotes chronic toxoplasma infection and leads to decreased resistance to challenge with an unrelated pathogen. These findings reveal that systemic infectious agents, such as T. gondii, can induce long-term immune alterations associated with impaired thymic function. When accumulated during the lifetime of the host, such events, even when occurring at low magnitude, could be a contributing factor in immunological senescence.
Collapse
Affiliation(s)
- David G Kugler
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Francis A Flomerfelt
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Karen Laky
- T Cell Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Olena Kamenyeva
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paul R Mittelstadt
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephan P Rosshart
- Immunology Section, Liver Diseases Branch, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
20
|
Abstract
Age-related changes in the immune system, commonly termed "immunosenescence," contribute to deterioration of the immune response and fundamentally impact the health and survival of elderly individuals. Immunosenescence affects both the innate and adaptive immune systems; however, the most notable changes are in T cell immunity and include thymic involution, the collapse of T cell receptor (TCR) diversity, an imbalance in T cell populations, and the clonal expansion of senescent T cells. Senescent T cells have the ability to produce large quantities of proinflammatory cytokines and cytotoxic mediators; thus, they have been implicated in the pathogenesis of many chronic inflammatory diseases. Recently, an increasing body of evidence has suggested that senescent T cells also have pathogenic potential in cardiovascular diseases, such as hypertension, atherosclerosis, and myocardial infarction, underscoring the detrimental roles of these cells in various chronic inflammatory responses. Given that cardiovascular disease is the number one cause of death worldwide, there is great interest in understanding the contribution of age-related immunological changes to its pathogenesis. In this review, we discuss general features of age-related alterations in T cell immunity and the possible roles of senescent T cells in the pathogenesis of cardiovascular disease.
Collapse
|
21
|
Gao YN, Pei XY, Jin R, Yin C, Shen H, Sun XY, Ge Q, Zhang Y. Suspension of thymic emigration promotes the maintenance of antigen-specific memory T cells and the recall responses. Biochem Biophys Res Commun 2014; 454:275-81. [DOI: 10.1016/j.bbrc.2014.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/16/2022]
|
22
|
Nusser A, Nuber N, Wirz OF, Rolink H, Andersson J, Rolink A. The development of autoimmune features in aging mice is closely associated with alterations of the peripheral CD4⁺ T-cell compartment. Eur J Immunol 2014; 44:2893-902. [PMID: 25044476 DOI: 10.1002/eji.201344408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/25/2014] [Accepted: 07/09/2014] [Indexed: 11/10/2022]
Abstract
Some signs of potential autoimmunity, such as the appearance of antinuclear antibodies (ANAs) become prevalent with age. In most cases, elderly people with ANAs remain healthy. Here, we investigated whether the same holds true for inbred strains of mice. Indeed, we show that most mice of the C57BL/6 (B6) strain spontaneously produced IgG ANA at 8-12 months of age, showed IgM deposition in kidneys and lymphocyte infiltrates in submandibular salivary glands. Despite all of this, the mice remained healthy. ANA production is likely CD4(+) T-cell dependent, since old (40-50 weeks of age) B6 mice deficient for MHC class II do not produce IgG ANAs. BM chimeras showed that ANA production was not determined by age-related changes in radiosensitive, hematopoietic progenitor cells, and that the CD4(+) T cells that promote ANA production were radioresistant. Thymectomy of B6 mice at 5 weeks of age led to premature alterations in T-cell homeostasis and ANA production, by 15 weeks of age, similar to that in old mice. Our findings suggest that a disturbed T-cell homeostasis may drive the onset of some autoimmune features.
Collapse
Affiliation(s)
- Anja Nusser
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Ventevogel MS, Sempowski GD. Thymic rejuvenation and aging. Curr Opin Immunol 2013; 25:516-22. [PMID: 23831111 DOI: 10.1016/j.coi.2013.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/15/2023]
Abstract
The thymus is a vital organ for homeostatic maintenance of the peripheral immune system. It is within this mediastinal tissue that T cells develop and are extensively educated and exported to the periphery for establishment of a functional and effective immune system. A striking paradoxical feature of this critical lymphoid tissue is that it undergoes profound age-associated involution. Thymic decline is of minimal consequence to healthy individuals, but the reduced efficacy of the immune system with age has direct etiological linkages with an increase in diseases including opportunistic infections, autoimmunity, and incidence/burden of cancer. Furthermore the inability of adults to restore immune function following insult induced by chemotherapy, ionizing radiation exposure or therapy, and infections (e.g. HIV-1) leads to increased morbidity and often mortality in the elderly. For these reasons, it is important that investigators strive to translate their understanding of mechanisms that drive thymic involution, and develop safe and effective strategies to rejuvenate the thymus in settings of clinical need. In this review, we present a discussion of the current status of thymic rejuvenation efforts associated with: sex steroid ablation, cytokines, growth factors, and hormones.
Collapse
Affiliation(s)
- Melissa S Ventevogel
- Duke University Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
24
|
Moro-García MA, Alonso-Arias R, López-Larrea C. Molecular mechanisms involved in the aging of the T-cell immune response. Curr Genomics 2013; 13:589-602. [PMID: 23730199 PMCID: PMC3492799 DOI: 10.2174/138920212803759749] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 12/24/2022] Open
Abstract
T-lymphocytes play a central role in the effector and regulatory mechanisms of the adaptive immune response. Upon exiting the thymus they begin to undergo a series of phenotypic and functional changes that continue throughout the lifetime and being most pronounced in the elderly. The reason postulated for this is that the dynamic processes of repeated interaction with cognate antigens lead to multiple division cycles involving a high degree of cell differentiation, senescence, restriction of the T-cell receptor (TCR) repertoire, and cell cycle arrest. This cell cycle arrest is associated with the loss of telomere sequences from the ends of chromosomes. Telomere length is reduced at each cell cycle, and critically short telomeres recruit components of the DNA repair machinery and trigger replicative senescence or apoptosis. Repetitively stimulated T-cells become refractory to telomerase induction, suffer telomere erosion and enter replicative senescence. The latter is characterized by the accumulation of highly differentiated T-cells with new acquired functional capabilities, which can be caused by aberrant expression of genes normally suppressed by epigenetic mechanisms in CD4+ or CD8+ T-cells. Age-dependent demethylation and overexpression of genes normally suppressed by DNA methylation have been demonstrated in senescent subsets of T-lymphocytes. Thus, T-cells, principally CD4+CD28null T-cells, aberrantly express genes, including those of the KIR gene family and cytotoxic proteins such as perforin, and overexpress CD70, IFN-γ, LFA-1 and others. In summary, owing to a lifetime of exposure to and proliferation against a variety of pathogens, highly differentiated T-cells suffer molecular modifications that alter their cellular homeostasis mechanisms.
Collapse
|
25
|
Moro-García MA, Alonso-Arias R, López-Larrea C. When Aging Reaches CD4+ T-Cells: Phenotypic and Functional Changes. Front Immunol 2013; 4:107. [PMID: 23675374 PMCID: PMC3650461 DOI: 10.3389/fimmu.2013.00107] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/25/2013] [Indexed: 12/30/2022] Open
Abstract
Beyond midlife, the immune system shows aging features and its defensive capability becomes impaired, by a process known as immunosenescence that involves many changes in the innate and adaptive responses. Innate immunity seems to be better preserved globally, while the adaptive immune response exhibits profound age-dependent modifications. Elderly people display a decline in numbers of naïve T-cells in peripheral blood and lymphoid tissues, while, in contrast, their proportion of highly differentiated effector and memory T-cells, such as the CD28null T-cells, increases markedly. Naïve and memory CD4+ T-cells constitute a highly dynamic system with constant homeostatic and antigen-driven proliferation, influx, and loss of T-cells. Thymic activity dwindles with age and essentially ceases in the later decades of life, severely constraining the generation of new T-cells. Homeostatic control mechanisms are very effective at maintaining a large and diverse subset of naïve CD4+ T-cells throughout life, but although later than in CD8 + T-cell compartment, these mechanisms ultimately fail with age.
Collapse
|
26
|
Understanding immunosenescence to improve responses to vaccines. Nat Immunol 2013; 14:428-36. [PMID: 23598398 DOI: 10.1038/ni.2588] [Citation(s) in RCA: 560] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/15/2013] [Indexed: 12/13/2022]
Abstract
In the older adult, the benefits of vaccination to prevent infectious disease are limited, mainly because of the adaptive immune system's inability to generate protective immunity. The age-dependent decrease in immunological competence, often referred to as 'immunosenescence', results from the progressive deterioration of innate and adaptive immune responses. Most insights into mechanisms of immunological aging have been derived from studies of mouse models. In this Review, we explore how well such models are applicable to understanding the aging process throughout the 80-100 years of human life and discuss recent advances in identifying and characterizing the mechanisms that underlie age-associated defective adaptive immunity in humans.
Collapse
|
27
|
Müller L, Fülöp T, Pawelec G. Immunosenescence in vertebrates and invertebrates. IMMUNITY & AGEING 2013; 10:12. [PMID: 23547999 PMCID: PMC3637519 DOI: 10.1186/1742-4933-10-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/14/2013] [Indexed: 12/26/2022]
Abstract
There is an established consensus that it is primarily the adaptive arm of immunity, and the T cell subset in particular, that is most susceptible to the deleterious changes with age known as “immunosenescence”. Can we garner any clues as to why this might be by considering comparative immunology and the evolutionary emergence of adaptive and innate immunity? The immune system is assumed to have evolved to protect the organism against pathogens, but the way in which this is accomplished is different in the innate-vs-adaptive arms, and it is unclear why the latter is necessary. Are there special characteristics of adaptive immunity which might make the system more susceptible to age-associated dysfunction? Given recent accumulating findings that actually there are age-associated changes to innate immunity and that these are broadly similar in vertebrates and invertebrates, we suggest here that it is the special property of memory in the adaptive immune system which results in the accumulation of cells with a restricted receptor repertoire, dependent on the immunological history of the individual’s exposures to pathogens over the lifetime, and which is commonly taken as a hallmark of “immunosenescence”. However, we further hypothesize that this immunological remodelling per se does not necessarily convey a disadvantage to the individual (ie. is not necessarily “senescence” if it is not deleterious). Indeed, under certain circumstances, or potentially even as a rule, this adaptation to the individual host environment may confer an actual survival advantage.
Collapse
Affiliation(s)
- Ludmila Müller
- Max-Planck Institute for Human Development, Berlin, Germany.
| | | | | |
Collapse
|
28
|
Engelfriet PM, Jansen EHJM, Picavet HSJ, Dollé MET. Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev 2013; 35:132-51. [PMID: 23382477 PMCID: PMC4707878 DOI: 10.1093/epirev/mxs011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Much progress has been made in the past decades in unraveling the mechanisms that are responsible for aging. The discovery that particular gene mutations in experimental species such as yeast, flies, and nematodes are associated with longevity has led to many important insights into pathways that regulate aging processes. However, extrapolating laboratory findings in experimental species to knowledge that is valid for the complexity of human physiology remains a major challenge. Apart from the restricted experimental possibilities, studying aging in humans is further complicated by the development of various age-related diseases. The availability of a set of biomarkers that really reflect underlying aging processes would be of much value in disentangling age-associated pathology from specific aging mechanisms. In this review, we survey the literature to identify promising biochemical markers of aging, with a particular focus on using them in longitudinal studies of aging in humans that entail repeated measurements on easily obtainable material, such as blood samples. Our search strategy was a 2-pronged approach, one focused on general mechanisms of aging and one including studies on clinical biomarkers of age-related diseases.
Collapse
Affiliation(s)
- Peter M. Engelfriet
- Correspondence to Dr. Peter M. Engelfriet, National Institute for Public Health and the Environment (RIVM), Centre for Prevention and Health Services Research, P.O. Box 1, 3720 BA Bilthoven, The Netherlands (e-mail: )
| | | | | | | |
Collapse
|
29
|
Goronzy JJ, Weyand CM. Aging and the immune system. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Adults 65 years old and older have reduced numbers of functional memory T cells to respiratory syncytial virus fusion protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:239-47. [PMID: 23239796 DOI: 10.1128/cvi.00580-12] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Respiratory syncytial virus (RSV) infects elderly (≥65 years) adults, causing medically attended illness and hospitalizations. While RSV neutralizing antibody levels correlate inversely with RSV-associated hospitalization in the elderly, the role of RSV-specific T cells in preventing disease in the elderly remains unclear. We examined RSV-specific humoral, mucosal, and cellular immune profiles in healthy elderly (65 to 85 years) and young (20 to 30 years) adults. RSV neutralization antibody titers in the elderly (10.5 ± 2.2 log(2)) and young (10.5 ± 2.1 log(2)) were similar. In contrast, levels of RSV F protein-specific gamma interferon (IFN-γ)-producing T cells were lower in elderly (180 ± 80 spot-forming cells [SFC]/10(6) peripheral blood mononuclear cells [PBMC]) than in young adults (1,250 ± 420 SFC/10(6) PBMC). Higher levels of interleukin-13 (IL-13; 3,000 ± 1,000 pg/ml) in cultured PBMC supernatants and lower frequency of RSV F-specific CD107a(+) CD8(+) T cells (3.0% ± 1.6% versus 5.0% ± 1.6%) were measured in PBMC from elderly than young adults. These results suggest that deficient RSV F-specific T cell responses contribute to susceptibility to severe RSV disease in elderly adults.
Collapse
|
31
|
Liston A, Papadopoulou AS, Danso-Abeam D, Dooley J. MicroRNA-29 in the adaptive immune system: setting the threshold. Cell Mol Life Sci 2012; 69:3533-41. [PMID: 22971773 PMCID: PMC11114856 DOI: 10.1007/s00018-012-1124-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022]
Abstract
Recent research into the role of microRNA (miR) in the immune system has identified the miR-29 family as critical regulators of key processes in adaptive immunity. The miR-29 family consists of four members with shared regulatory capacity, namely miR-29a, miR-29b-1, miR-29b-2 and miR-29c. Being expressed in both T and B cells, as well as the main accessory cell types of thymic epithelium and dendritic cells, the miR-29 family has been identified as a putative regulator of immunity due to the predicted suppression of key immunological pathways. The generation of a series of in vivo molecular tools targeting the miR-29 family has identified the critical role of these miR in setting the molecular threshold for three central events in adaptive immunity: (1) control over thymic production of T cells by modulating the threshold for infection-associated thymic involution, (2) creating a neutral threshold for T cell polarization following activation, and (3) setting the threshold for B cell oncogenic transformation. These results identify the miR-29 family as potent immune modulators which have already been exploited through the evolution of a viral mimic and could potentially be exploited further for therapeutic intervention.
Collapse
Affiliation(s)
- Adrian Liston
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Leuven, Belgium
| | | | - Dina Danso-Abeam
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Leuven, Belgium
| | - James Dooley
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Dooley J, Liston A. Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue. Eur J Immunol 2012; 42:1073-9. [PMID: 22539280 DOI: 10.1002/eji.201142305] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The thymus is the primary organ for T-cell differentiation and maturation. Unlike other major organs, the thymus is highly dynamic, capable of undergoing multiple rounds of almost complete atrophy followed by rapid restoration. The process of thymic atrophy, or involution, results in decreased thymopoiesis and emigration of naïve T cells to the periphery. Multiple processes can trigger transient thymic involution, including bacterial and viral infection(s), aging, pregnancy and stress. Intense investigations into the mechanisms that underlie thymic involution have revealed diverse cellular and molecular mediators, with elaborate control mechanisms. This review outlines the disparate pathways through which involution can be mediated, from the transient infection-mediated pathway, tightly controlled by microRNA, to the chronic changes that occur through aging.
Collapse
Affiliation(s)
- James Dooley
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Belgium.
| | | |
Collapse
|
33
|
The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nat Immunol 2011; 13:181-7. [PMID: 22179202 DOI: 10.1038/ni.2193] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 11/21/2011] [Indexed: 11/08/2022]
Abstract
Thymic output is a dynamic process, with high activity at birth punctuated by transient periods of involution during infection. Interferon-α (IFN-α) is a critical molecular mediator of pathogen-induced thymic involution, yet despite the importance of thymic involution, relatively little is known about the molecular integrators that establish sensitivity. Here we found that the microRNA network dependent on the endoribonuclease Dicer, and specifically microRNA miR-29a, was critical for diminishing the sensitivity of the thymic epithelium to simulated infection signals, protecting the thymus against inappropriate involution. In the absence of Dicer or the miR-29a cluster in the thymic epithelium, expression of the IFN-α receptor by the thymic epithelium was higher, which allowed suboptimal signals to trigger rapid loss of thymic cellularity.
Collapse
|
34
|
Jirillo F, Jirillo E, Magrone T. Restoration of host–microbiota homeostasis for attaining healthy aging: the role of milk and fermented milk. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2011. [DOI: 10.1007/s12349-011-0051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Nonrandom attrition of the naive CD8+ T-cell pool with aging governed by T-cell receptor:pMHC interactions. Proc Natl Acad Sci U S A 2011; 108:13694-9. [PMID: 21813761 DOI: 10.1073/pnas.1107594108] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunity against new infections declines in the last quartile of life, as do numbers of naive T cells. Peripheral maintenance of naive T cells over the lifespan is necessary because their production drastically declines by puberty, a result of thymic involution. We report that this maintenance is not random in advanced aging. As numbers and diversity of naive CD8(+) T cells declined with aging, surviving cells underwent faster rates of homeostatic proliferation, were selected for high T-cell receptor:pMHC avidity, and preferentially acquired "memory-like" phenotype. These high-avidity precursors preferentially responded to infection and exhibited strong antimicrobial function. Thus, T-cell receptor avidity for self-pMHC provides a proofreading mechanism to maintain some of the fittest T cells in the otherwise crumbling naive repertoire, providing a degree of compensation for numerical and diversity defects in old T cells.
Collapse
|
36
|
Ageing and immunity: addressing immune senescence to ensure healthy ageing. Vaccine 2010; 28:3627-31. [PMID: 20362616 DOI: 10.1016/j.vaccine.2010.03.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Among the greatest achievements of the 20th century, prolongation of life expectancy has been the result of improved health conditions, decreased childhood mortality, lower incidence of infectious diseases. The consequence is the rapid ageing of the world population, with the elderly representing over 25% of the entire population by the year 2030, of which 75% living in less developed countries. Ageing thus represents one of the major public health challenges of the 21st century. Indeed, unhealthy ageing and frailty of the aged population has an important impact on the economic development and social costs of a country, a problem even more acute in less developed countries. A better knowledge of immune senescence and the design of customised vaccination strategies for the elderly are the immediate challenges posed to scientists and physicians. The conference "Ageing and immunity", recently held in Siena (Italy), has addressed these issues and defined the global strategic priorities for research and health policies aimed at ensuring healthy ageing.
Collapse
|
37
|
Shanley DP, Aw D, Manley NR, Palmer DB. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol 2009; 30:374-81. [PMID: 19541538 DOI: 10.1016/j.it.2009.05.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 04/12/2009] [Accepted: 05/11/2009] [Indexed: 10/20/2022]
Abstract
There is an accumulating body of evidence that a decline in immune function with age is common to most if not all vertebrates. For instance, age-associated thymic involution seems to occur in all species that possess a thymus, indicating that this process is evolutionary ancient and conserved. The precise mechanisms regulating immunosenescence remain to be resolved, but much of what we do know is consistent with modern evolutionary theory. In this review, we assess our current knowledge from an evolutionary perspective on the occurrence of immunosenescence, we show that life history trade-offs play a key role and we highlight the possible advantages of the age-related decline in thymic function.
Collapse
Affiliation(s)
- Daryl P Shanley
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | | | | | | |
Collapse
|