1
|
Sun Y, Huang W, Xiang H, Nie J. SARS-CoV-2 Neutralization Assays Used in Clinical Trials: A Narrative Review. Vaccines (Basel) 2024; 12:554. [PMID: 38793805 PMCID: PMC11125816 DOI: 10.3390/vaccines12050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Since the emergence of COVID-19, extensive research efforts have been undertaken to accelerate the development of multiple types of vaccines to combat the pandemic. These include inactivated, recombinant subunit, viral vector, and nucleic acid vaccines. In the development of these diverse vaccines, appropriate methods to assess vaccine immunogenicity are essential in both preclinical and clinical studies. Among the biomarkers used in vaccine evaluation, the neutralizing antibody level serves as a pivotal indicator for assessing vaccine efficacy. Neutralizing antibody detection methods can mainly be classified into three types: the conventional virus neutralization test, pseudovirus neutralization test, and surrogate virus neutralization test. Importantly, standardization of these assays is critical for their application to yield results that are comparable across different laboratories. The development and use of international or regional standards would facilitate assay standardization and facilitate comparisons of the immune responses induced by different vaccines. In this comprehensive review, we discuss the principles, advantages, limitations, and application of different SARS-CoV-2 neutralization assays in vaccine clinical trials. This will provide guidance for the development and evaluation of COVID-19 vaccines.
Collapse
Affiliation(s)
- Yeqing Sun
- School of Life Sciences, Jilin University, Changchun 130012, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| | - Hongyu Xiang
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| |
Collapse
|
2
|
Mohamed-Ezzat RA, Elgemeie GH. Novel synthesis of the first new class of triazine sulfonamide thioglycosides and the evaluation of their anti-tumor and anti-viral activities against human coronavirus. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1511-1528. [PMID: 38753464 DOI: 10.1080/15257770.2024.2341406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Novel class of triazine sulfonamide thioglycosides was designed and synthesized. Those novel structures comprising three essential and pharmacological significant moieties such as the triazine, sulfonamide, and thioglycosidic scaffolds. The triazine sulfonamides were furnished via a direct approach starting from potassium cyanocarbonimidodithioate, then the corresponding triazine sulfonamide thioglycosides were generated using the peracylated α-d-gluco- and galacto-pyranosyl bromides. Anti-viral evaluation of compounds in vitro against HCoV-229E virus revealed that some compounds possess promising activity. Compounds 4a, 4b, 4d, 6d and 6e indicate from moderate to low antiviral activity against low pathogenic coronavirus 229E in comparison with remdesivir at a concentration of 100 µg/mL. Additionally their in vitro anti-proliferative effects against NCI 60 cancer cell lines cell lines were also investigated. Compound 4a, the most potent compound among the estimated compounds, revealed remarkably lowest cell growth promotion against CNS cancer SNB-75, and renal cancer UO-31.
Collapse
Affiliation(s)
- Reham A Mohamed-Ezzat
- Chemistry of Natural & Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Galal H Elgemeie
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
3
|
Almazán NM, Rahbar A, Carlsson M, Hoffman T, Kolstad L, Rönnberg B, Pantalone MR, Fuchs IL, Nauclér A, Ohlin M, Sacharczuk M, Religa P, Amér S, Molnár C, Lundkvist Å, Susrud A, Sörensen B, Söderberg-Nauclér C. Influenza-A mediated pre-existing immunity levels to SARS-CoV-2 could predict early COVID-19 outbreak dynamics. iScience 2023; 26:108441. [PMID: 38144451 PMCID: PMC10746369 DOI: 10.1016/j.isci.2023.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/14/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is highly variable and could be mediated by a cross-protective pre-immunity. We identified 14 cross-reactive peptides between SARS-CoV-2 and influenza A H1N1, H3N2, and human herpesvirus (HHV)-6A/B with potential relevance. The H1N1 peptide NGVEGF was identical to a peptide in the most critical receptor binding motif in SARS-CoV-2 spike protein that interacts with the angiotensin converting enzyme 2 receptor. About 62%-73% of COVID-19-negative blood donors in Stockholm had antibodies to this peptide in the early pre-vaccination phase of the pandemic. Seasonal flu vaccination enhanced neutralizing capacity to SARS-CoV-2 and T cell immunity to this peptide. Mathematical modeling taking the estimated pre-immunity levels to flu into account could fully predict pre-Omicron SARS-CoV-2 outbreaks in Stockholm and India. This cross-immunity provides mechanistic explanations to the epidemiological observation that influenza vaccination protected people against early SARS-CoV-2 infections and implies that flu-mediated cross-protective immunity significantly dampened the first SARS-CoV-2 outbreaks.
Collapse
Affiliation(s)
- Nerea Martín Almazán
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 141 86 Huddinge Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
| | - Marcus Carlsson
- Centre for the Mathematical Sciences, Lund University, 223 62 Lund, Sweden
| | - Tove Hoffman
- Zoonosis Science Center (ZSC), Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, 1477 Uppsala, Sweden
| | - Linda Kolstad
- Zoonosis Science Center (ZSC), Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, 1477 Uppsala, Sweden
| | - Bengt Rönnberg
- Zoonosis Science Center (ZSC), Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, 1477 Uppsala, Sweden
| | - Mattia Russel Pantalone
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
| | - Ilona Lewensohn Fuchs
- Department of Labortory Medicine, Division of Clinical Microbiology, Karolinska Institutet, 141 86 Huddinge Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, 141 86 Huddinge Stockholm, Sweden
| | - Anna Nauclér
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
| | - Mats Ohlin
- Department of Immunotechnology and SciLifeLab Human Antibody Therapeutics Infrastructure Unit, Lund University, 223 62 Lund, Sweden
| | - Mariusz Sacharczuk
- Faculty of Pharmacy with the Laboratory Medicine Division, Department of Pharmacodynamics, Medical University of Warsaw, Centre for Preclinical Research and Technology, Banacha 1B, 02-091 Warsaw, Poland
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Piotr Religa
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Stefan Amér
- Familjeläkarna Saltsjöbaden, 133 34 Saltsjöbaden, Sweden
| | - Christian Molnár
- Familjeläkarna Saltsjöbaden, 133 34 Saltsjöbaden, Sweden
- Department of Neurobiology, Care Sciences and Society, NVS, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center (ZSC), Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, 1477 Uppsala, Sweden
| | | | | | - Cecilia Söderberg-Nauclér
- Department of Medicine, Unit for Microbial Pathogenesis, Karolinska Institutet, 17164 Solna, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 171 76 Solna Stockholm, Sweden
- Institute of Biomedicine, Unit for Infection and Immunology, MediCity Research Laboratory, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
4
|
Sahu PP, Sarma G, Das S, Borkakoty B. Rapid diagnosis of COVID-19 using disposal paper capacitive sensor. Anal Chim Acta 2023; 1273:341500. [PMID: 37423659 DOI: 10.1016/j.aca.2023.341500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Accurate and rapid detection and isolation become indispensable to restrict the spread of COVID-19. Since the start of COVID-19 pandemic in December 2019, many indisposal diagnostic tools are being developed incessantly. Out of all presently used tools, the gold standard rRT- PCR tool having very high sensitivity and specificity is a time consuming complicated molecular technique having requirements of special expensive equipment. Here, the main focus of this work is to develop rapid disposal paper capacitance sensor having simple and easy detection. We discovered a strong interaction between limonin and Spike-glycoprotein of SARS-COV-2 in comparison to its interaction with other similar viruses such as HCOV-OC43, HCOV-NL63, HCOV-HKU1, Influenza B and A viruses. The antibody free capacitive sensor having comb electrode structure was fabricated on whatman paper with drop coating of limonin (extracted using green method from pomelo seeds) and calibrated with known swab samples. The Blind test with unknown swab samples shows high sensitivity of 91.5% and high specificity of 88.37%. Requiring low sample volume and detection time and using biodegradable materials in the sensor fabrication assure the potential application as a point of care disposal diagnostic tool.
Collapse
Affiliation(s)
- Partha P Sahu
- Department of Electronics and Communication Engineering, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Geetartha Sarma
- Department of Electronics and Communication Engineering, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| | - Satyajit Das
- Department of Electronics and Communication Engineering, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Biswajyoti Borkakoty
- Regional VRDL, Regional Medical Research Centre, ICMR, N.E. Region, Dibrugarh, 786001, Assam, India
| |
Collapse
|
5
|
Peptide microarray IgM and IgG screening of pre-SARS-CoV-2 human serum samples from Zimbabwe for reactivity with peptides from all seven human coronaviruses: a cross-sectional study. THE LANCET MICROBE 2023. [PMCID: PMC9931394 DOI: 10.1016/s2666-5247(22)00295-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
6
|
Abebe EC, Dejenie TA. Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Front Immunol 2023; 14:1055457. [PMID: 36742320 PMCID: PMC9892939 DOI: 10.3389/fimmu.2023.1055457] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neutralizing antibodies (NAbs) are central players in the humoral immunity that defends the body from SARS-CoV-2 infection by blocking viral entry into host cells and neutralizing their biological effects. Even though NAbs primarily work by neutralizing viral antigens, on some occasions, they may also combat the SARS-CoV-2 virus escaping neutralization by employing several effector mechanisms in collaboration with immune cells like natural killer (NK) cells and phagocytes. Besides their prophylactic and therapeutic roles, antibodies can be used for COVID-19 diagnosis, severity evaluation, and prognosis assessment in clinical practice. Furthermore, the measurement of NAbs could have key implications in determining individual or herd immunity against SARS-CoV-2, vaccine effectiveness, and duration of the humoral protective response, as well as aiding in the selection of suitable individuals who can donate convalescent plasma to treat infected people. Despite all these clinical applications of NAbs, using them in clinical settings can present some challenges. This review discusses the protective functions, possible protective mechanisms against SARS-CoV-2, and potential clinical applications of NAbs in COVID-19. This article also highlights the possible challenges and solutions associated with COVID-19 antibody-based prophylaxis, therapy, and vaccination.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Li N, Li X, Wu J, Zhang S, Zhu L, Chen Q, Fan Y, Wu Z, Xie S, Chen Q, Wang N, Wu N, Luo C, Shu Y, Luo H. Pre-existing humoral immunity to low pathogenic human coronaviruses exhibits limited cross-reactive antibodies response against SARS-CoV-2 in children. Front Immunol 2022; 13:1042406. [PMCID: PMC9626651 DOI: 10.3389/fimmu.2022.1042406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes asymptomatic or mild symptoms, even rare hospitalization in children. A major concern is whether the pre-existing antibodies induced by low pathogenic human coronaviruses (LPH-CoVs) in children can cross-react with SARS-CoV-2. To address this unresolved question, we analyzed the pre-existing spike (S)-specific immunoglobin (Ig) G antibodies against LPH-CoVs and the cross-reactive antibodies against SARS-CoV-2 in 658 serum samples collected from children prior to SARS-CoV-2 outbreak. We found that the seroprevalence of these four LPH-CoVs reached 75.84%, and about 24.64% of the seropositive samples had cross-reactive IgG antibodies against the nucleocapsid, S, and receptor binding domain antigens of SARS-CoV-2. Additionally, the re-infections with different LPH-CoVs occurred frequently in children and tended to increase the cross-reactive antibodies against SARS-CoV-2. From the forty-nine serum samples with cross-reactive anti-S IgG antibodies against SARS-CoV-2, we found that seven samples with a median age of 1.4 years old had detected neutralizing activity for the wild-type or mutant SARS-CoV-2 S pseudotypes. Interestingly, all of the seven samples contained anti-S IgG antibodies against HCoV-OC43. Together, these data suggest that children’s pre-existing antibodies to LPH-CoVs have limited cross-reactive neutralizing antibodies against SRAS-CoV-2.
Collapse
Affiliation(s)
- Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - XueYun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Fan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhengyu Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Sidian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ning Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Wu
- Department of Epidemiology, Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- *Correspondence: Huanle Luo, ; Yuelong Shu,
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- *Correspondence: Huanle Luo, ; Yuelong Shu,
| |
Collapse
|
8
|
Lan Q, Chan JFW, Xu W, Wang L, Jiao F, Zhang G, Pu J, Zhou J, Xia S, Lu L, Yuen KY, Jiang S, Wang Q. A Palmitic Acid-Conjugated, Peptide-Based pan-CoV Fusion Inhibitor Potently Inhibits Infection of SARS-CoV-2 Omicron and Other Variants of Concern. Viruses 2022; 14:v14030549. [PMID: 35336956 PMCID: PMC8955410 DOI: 10.3390/v14030549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Our previous studies have shown that cholesterol-conjugated, peptide-based pan-coronavirus (CoV) fusion inhibitors can potently inhibit human CoV infection. However, only palmitic acid (C16)-based lipopeptide drugs have been tested clinically, suggesting that the development of C16-based lipopeptide drugs is feasible. Here, we designed and synthesized a C16-modified pan-CoV fusion inhibitor, EK1-C16, and found that it potently inhibited infection by SARS-CoV-2 and its variants of concern (VOCs), including Omicron, and other human CoVs and bat SARS-related CoVs (SARSr-CoVs). These results suggest that EK1-C16 could be further developed for clinical use to prevent and treat infection by the currently circulating MERS-CoV, SARS-CoV-2 and its VOCs, as well as any future emerging or re-emerging coronaviruses.
Collapse
Affiliation(s)
- Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Jasper Fuk-Woo Chan
- Carol Yu Centre for Infection, State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Lijue Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Fanke Jiao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Guangxu Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
| | - Kwok-Yung Yuen
- Carol Yu Centre for Infection, State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Correspondence: (K.-Y.Y.); (S.J.); (Q.W.)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
- Correspondence: (K.-Y.Y.); (S.J.); (Q.W.)
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (Q.L.); (W.X.); (L.W.); (F.J.); (G.Z.); (J.P.); (J.Z.); (S.X.); (L.L.)
- Correspondence: (K.-Y.Y.); (S.J.); (Q.W.)
| |
Collapse
|
9
|
Lan Q, Xia S, Lu L. Coronavirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:101-121. [DOI: 10.1007/978-981-16-8702-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Morales-Núñez JJ, Muñoz-Valle JF, Torres-Hernández PC, Hernández-Bello J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines (Basel) 2021; 9:vaccines9121376. [PMID: 34960121 PMCID: PMC8706198 DOI: 10.3390/vaccines9121376] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The antibody response to respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Neutralizing antibody (NAb) evaluations are useful for the determination of individual or herd immunity against SARS-CoV-2, vaccine efficacy, and humoral protective response longevity, as well as supporting donor selection criteria for convalescent plasma therapy. In the current manuscript, we review the essential concepts of NAbs, examining their concept, mechanisms of action, production, and the techniques used for their detection; as well as presenting an overview of the clinical use of antibodies in COVID-19.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | | | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
- Correspondence: ; Tel.: +52-333-450-9355
| |
Collapse
|
11
|
Lan Q, Wang C, Zhou J, Wang L, Jiao F, Zhang Y, Cai Y, Lu L, Xia S, Jiang S. 25-Hydroxycholesterol-Conjugated EK1 Peptide with Potent and Broad-Spectrum Inhibitory Activity against SARS-CoV-2, Its Variants of Concern, and Other Human Coronaviruses. Int J Mol Sci 2021; 22:ijms222111869. [PMID: 34769299 PMCID: PMC8584349 DOI: 10.3390/ijms222111869] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection poses a serious threat to global public health and the economy. The enzymatic product of cholesterol 25-hydroxylase (CH25H), 25-Hydroxycholesterol (25-HC), was reported to have potent anti-SARS-CoV-2 activity. Here, we found that the combination of 25-HC with EK1 peptide, a pan-coronavirus (CoV) fusion inhibitor, showed a synergistic antiviral activity. We then used the method of 25-HC modification to design and synthesize a series of 25-HC-modified peptides and found that a 25-HC-modified EK1 peptide (EK1P4HC) was highly effective against infections caused by SARS-CoV-2, its variants of concern (VOCs), and other human CoVs, such as HCoV-OC43 and HCoV-229E. EK1P4HC could protect newborn mice from lethal HCoV-OC43 infection, suggesting that conjugation of 25-HC with a peptide-based viral inhibitor was a feasible and universal strategy to improve its antiviral activity.
Collapse
Affiliation(s)
- Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong An Road, Shanghai 200032, China; (Q.L.); (J.Z.); (L.W.); (F.J.); (Y.Z.); (Y.C.); (L.L.)
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China;
| | - Jie Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong An Road, Shanghai 200032, China; (Q.L.); (J.Z.); (L.W.); (F.J.); (Y.Z.); (Y.C.); (L.L.)
| | - Lijue Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong An Road, Shanghai 200032, China; (Q.L.); (J.Z.); (L.W.); (F.J.); (Y.Z.); (Y.C.); (L.L.)
| | - Fanke Jiao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong An Road, Shanghai 200032, China; (Q.L.); (J.Z.); (L.W.); (F.J.); (Y.Z.); (Y.C.); (L.L.)
| | - Yanbo Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong An Road, Shanghai 200032, China; (Q.L.); (J.Z.); (L.W.); (F.J.); (Y.Z.); (Y.C.); (L.L.)
| | - Yanxing Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong An Road, Shanghai 200032, China; (Q.L.); (J.Z.); (L.W.); (F.J.); (Y.Z.); (Y.C.); (L.L.)
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong An Road, Shanghai 200032, China; (Q.L.); (J.Z.); (L.W.); (F.J.); (Y.Z.); (Y.C.); (L.L.)
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong An Road, Shanghai 200032, China; (Q.L.); (J.Z.); (L.W.); (F.J.); (Y.Z.); (Y.C.); (L.L.)
- Correspondence: (S.X.); (S.J.)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, 130 Dong An Road, Shanghai 200032, China; (Q.L.); (J.Z.); (L.W.); (F.J.); (Y.Z.); (Y.C.); (L.L.)
- Correspondence: (S.X.); (S.J.)
| |
Collapse
|
12
|
Taghioff SM, Slavin BR, Holton T, Singh D. Examining the potential benefits of the influenza vaccine against SARS-CoV-2: A retrospective cohort analysis of 74,754 patients. PLoS One 2021; 16:e0255541. [PMID: 34343191 PMCID: PMC8330918 DOI: 10.1371/journal.pone.0255541] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/17/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Recently, several single center studies have suggested a protective effect of the influenza vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This study utilizes a continuously updated Electronic Medical Record (EMR) network to assess the possible benefits of influenza vaccination mitigating critical adverse outcomes in SARS-CoV-2 positive patients from 56 healthcare organizations (HCOs). METHODS The de-identified records of 73,346,583 patients were retrospectively screened. Two cohorts of 37,377 patients, having either received or not received influenza vaccination six months-two weeks prior to SARS-CoV-2 positive diagnosis, were created using Common Procedural Terminology (CPT) and logical observation identifiers names and codes (LOINC) codes. Adverse outcomes within 30, 60, 90, and 120 days of positive SARS-CoV-2 diagnosis were compared between cohorts. Outcomes were assessed with stringent propensity score matching including age, race, ethnicity, gender, hypertension, diabetes, hyperlipidemia, chronic obstructive pulmonary disease (COPD), obesity, heart disease, and lifestyle habits such as smoking. RESULTS SARS-CoV-2-positive patients who received the influenza vaccine experienced decreased sepsis (p<0.01, Risk Ratio: 1.361-1.450, 95% CI:1.123-1.699, NNT:286) and stroke (p<0.02, RR: 1.451-1.580, 95% CI:1.075-2.034, NNT:625) across all time points. ICU admissions were lower in SARS-CoV-2-positive patients receiving the influenza vaccine at 30, 90, and 120 days (p<0.03, RR: 1.174-1.200, 95% CI:1.003-1.385, NNT:435), while approaching significance at 60 days (p = 0.0509, RR: 1.156, 95% CI:0.999-1.338). Patients who received the influenza vaccine experienced fewer DVTs 60-120 days after positive SARS-CoV-2 diagnosis (p<0.02, RR:1.41-1.530, 95% CI:1.082-2.076, NNT:1000) and experienced fewer emergency department (ED) visits 90-120 days post SARS-CoV-2-positive diagnosis (p<0.01, RR:1.204-1.580, 95% CI: 1.050-1.476, NNT:176). CONCLUSION Our analysis outlines the potential protective effect of influenza vaccination in SARS-CoV-2-positive patients against adverse outcomes within 30, 60, 90, and 120 days of a positive diagnosis. Significant findings favoring influenza vaccination mitigating the risks of sepsis, stroke, deep vein thrombosis (DVT), emergency department (ED) & Intensive Care Unit (ICU) admissions suggest a potential protective effect that could benefit populations without readily available access to SARS-CoV-2 vaccination. Thus further investigation with future prospective studies is warranted.
Collapse
Affiliation(s)
- Susan M. Taghioff
- Division of Plastic & Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Benjamin R. Slavin
- Division of Plastic & Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Tripp Holton
- Anne Arundel Medical Center, Annapolis, Maryland, United States of America
| | - Devinder Singh
- Division of Plastic & Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
13
|
Yang Y, Du L. SARS-CoV-2 spike protein: a key target for eliciting persistent neutralizing antibodies. Signal Transduct Target Ther 2021; 6:95. [PMID: 33637679 PMCID: PMC7908000 DOI: 10.1038/s41392-021-00523-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|