1
|
Slominski RM, Raman C, Jetten AM, Slominski AT. Neuro-immuno-endocrinology of the skin: how environment regulates body homeostasis. Nat Rev Endocrinol 2025:10.1038/s41574-025-01107-x. [PMID: 40263492 DOI: 10.1038/s41574-025-01107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
The skin, including the hypodermis, is the largest organ of the body. The epidermis, the uppermost layer, is in direct contact with the environment and is exposed to environmental stressors, including solar radiation and biological, chemical and physical factors. These environmental factors trigger local responses within the skin that modulate homeostasis on both the cutaneous and systemic levels. Using mediators in common with brain pathways, immune and neuroendocrine systems within the skin regulate these responses to activate various signal transduction pathways and influence the systemic endocrine and immune systems in a context-dependent manner. This skin neuro-immuno-endocrine system is compartmentalized through the formation of epidermal, dermal, hypodermal and adnexal regulatory units. These units can act separately or in concert to preserve skin integrity, allow for adaptation to a changing environment and prevent the development of pathological processes. Through activation of peripheral nerve endings, the release of neurotransmitters, hormones, neuropeptides, and cytokines and/or chemokines into the circulation, or by priming circulating and resident immune cells, this system affects central coordinating centres and global homeostasis, thus adjusting the body's homeostasis and allostasis to optimally respond to the changing environment.
Collapse
Affiliation(s)
- Radomir M Slominski
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- Veteran Administration Medical Center, Birmingham, AL, USA.
| |
Collapse
|
2
|
Martel Matos AA, Scheff NN. Sensory neurotransmission and pain in solid tumor progression. Trends Cancer 2025; 11:309-320. [PMID: 39884880 PMCID: PMC12100539 DOI: 10.1016/j.trecan.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Sensory nerves form a crucial component of the tumor microenvironment (TME) that relays vital information to the central nervous system and modulates tumor progression via immunosurveillance. Afferent activity processed by the brain can sensitize brain circuitry and influence host behaviors. Peripheral sensory signaling (e.g., release of neuropeptides in the TME) can drive phenotypic changes in the tumor immune response, such as increased exhaustion markers and inhibited effector cell activity, which promote cancer progression. In this review we highlight the most recent evidence demonstrating the pivotal role of the sensory nervous system in cancer, with a focus on primary tumor pain, and we discuss the extent to which pain can influence cancer progression and treatment response, including immunotherapeutic strategies.
Collapse
Affiliation(s)
- Andre A Martel Matos
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Wen J, Li Y, Deng W, Li Z. Central nervous system and immune cells interactions in cancer: unveiling new therapeutic avenues. Front Immunol 2025; 16:1528363. [PMID: 40092993 PMCID: PMC11907007 DOI: 10.3389/fimmu.2025.1528363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cancer remains a leading cause of mortality worldwide. Despite significant advancements in cancer research, our understanding of its complex developmental pathways remains inadequate. Recent research has clarified the intricate relationship between the central nervous system (CNS) and cancer, particularly how the CNS influences tumor growth and metastasis via regulating immune cell activity. The interactions between the central nervous system and immune cells regulate the tumor microenvironment via various signaling pathways, cytokines, neuropeptides, and neurotransmitters, while also incorporating processes that alter the tumor immunological landscape. Furthermore, therapeutic strategies targeting neuro-immune cell interactions, such as immune checkpoint inhibitors, alongside advanced technologies like brain-computer interfaces and nanodelivery systems, exhibit promise in improving treatment efficacy. This complex bidirectional regulatory network significantly affects tumor development, metastasis, patient immune status, and therapy responses. Therefore, understanding the mechanisms regulating CNS-immune cell interactions is crucial for developing innovative therapeutic strategies. This work consolidates advancements in CNS-immune cell interactions, evaluates their potential in cancer treatment strategies, and provides innovative insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanli Deng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
4
|
Yee G, Wu R, Oshi M, Endo I, Ishikawa T, Takabe K. Activity-Regulated Cytoskeleton-Associated Protein Gene Expression Is Associated With High Infiltration of Stromal Cells and Immune Cells, but With Less Cancer Cell Proliferation and Better Overall Survival in Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancers. World J Oncol 2025; 16:16-29. [PMID: 39850523 PMCID: PMC11750752 DOI: 10.14740/wjon1936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
Background Peritumoral lidocaine infiltration prior to excision is associated with better survival in breast cancer (BC), which led us to hypothesize that innervation to the tumor affects its biology and patient survival. Activity-regulated cytoskeleton-associated protein (ARC) gene expression is known to be regulated by neuronal activity. Therefore, we studied the clinical relevance of ARC gene expression as a surrogate of neuronal activity in BC. Methods Sweden Cancerome Analysis Network - Breast (SCAN-B (GSE96058), n = 3,273) cohort and The Cancer Genome Atlas (TCGA, n = 1,069) were analyzed. Results High ARC expression was significantly associated with smaller tumor size, without lymph node metastasis, and less stage IV disease in one cohort, but not validated by the other. Estrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) and luminal A expressed significantly higher ARC compared to the other subtypes in both cohorts (P < 0.005). High ARC BC was significantly associated with lower Nottingham histological grade and lower Ki67 gene expression consistently in ER+/HER2- but not triple negative breast cancer (TNBC) in both cohorts (P < 0.001). Cell proliferation-related gene sets in the Hallmark collection (E2F targets, G2M checkpoint, and mitotic spindle) were significantly enriched to low ARC BC in ER+/HER2- but not TNBC in TCGA. The stromal cells (fibroblasts, vascular endothelial cells, and adipocytes) were all significantly infiltrated in high ARC ER+/HER2-, but not in TNBC, except for neurons. Homologous recombination deficiency, intratumor heterogeneity, fraction altered, silent or non-silent mutation rate were all significantly lower in high ARC ER+/HER2- but not TNBC. Although there was no difference in single nucleotide variant or indel neoantigens, tumor infiltrating lymphocytes, and cytolytic activity by ARC expression regardless of subtype, multiple immune cells were significantly infiltrated in high ARC ER+/HER2-, including CD8, CD4 memory cells, helper type II T cells, regulatory T cells, M2 macrophages, and B cells (all P < 0.03 in both cohorts), but not in TNBC. Disease-specific and overall survival were significantly improved in high ARC ER+/HER2- consistently in both cohorts (all P < 0.05), but this was not the case in TNBC. Conclusion ARC gene expression was associated with less cancer cell proliferation, high infiltration of stromal cells and immune cells, and better survival in the ER+/HER2- but not TNBC subtype.
Collapse
Affiliation(s)
- Gabrielle Yee
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
- These authors equally contributed to this manuscript
| | - Rongrong Wu
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- These authors equally contributed to this manuscript
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
5
|
Zaninelli TH, Saraiva-Santos T, Patlin BH, Stratton MS, Chen DY, Pinho-Ribeiro FA. Protocol for a non-surgical model of perineural invasion for assessing neural drivers of cancer aggressiveness in mice. STAR Protoc 2024; 5:103345. [PMID: 39331501 PMCID: PMC11467663 DOI: 10.1016/j.xpro.2024.103345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Perineural invasion (PNI) is a significant risk factor for cancer recurrence and metastasis; however, its mechanisms relating to cancer aggressiveness remain poorly understood. Here, we present a protocol for a non-surgical model of PNI in mice using a neurotropic melanoma cell line that migrates from the skin to the sciatic nerve. We describe the steps for cell culture and injection, tumor burden measurements, mouse euthanasia, and tissue dissection. We then detail procedures for sample cross-section and confocal imaging.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA.
| | - Telma Saraiva-Santos
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Brielle H Patlin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Michael Slade Stratton
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - David Y Chen
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | - Felipe A Pinho-Ribeiro
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Lu Y, Ramakrishnan S, Martino MM. The healing power of sensory neurons: New horizons for diabetic and neuropathic tissue repair. Clin Transl Med 2024; 14:e1813. [PMID: 39166883 PMCID: PMC11337464 DOI: 10.1002/ctm2.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Affiliation(s)
- Yen‐Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine InstituteMonash UniversityMelbourneAustralia
| | - Sanjay Ramakrishnan
- Institute for Respiratory HealthUniversity of Western AustraliaPerthAustralia
| | - Mikaël M. Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine InstituteMonash UniversityMelbourneAustralia
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research CenterOsaka UniversityOsakaJapan
- Victorian Heart InstituteMonash UniversityMelbourneAustralia
| |
Collapse
|
7
|
Qin Q, Ramesh S, Li Z, Zhong L, Cherief M, Archer M, Xing X, Thottappillil N, Gomez-Salazar M, Xu M, Zhu M, Chang L, Uniyal A, Mazhar K, Mittal M, McCarthy EF, Morris CD, Levi B, Guan Y, Clemens TL, Price TJ, James AW. TrkA + sensory neurons regulate osteosarcoma proliferation and vascularization to promote disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599869. [PMID: 38979210 PMCID: PMC11230162 DOI: 10.1101/2024.06.20.599869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bone pain is a presenting feature of bone cancers such as osteosarcoma (OS), relayed by skeletal-innervating peripheral afferent neurons. Potential functions of tumor-associated sensory neurons in bone cancers beyond pain sensation are unknown. To uncover neural regulatory functions, a chemical-genetic approach in mice with a knock-in allele for TrkA was used to functionally perturb sensory nerve innervation during OS growth and disease progression. TrkA inhibition in transgenic mice led to significant reductions in sarcoma-associated sensory innervation and vascularization, tumor growth and metastasis, and prolonged overall survival. Single-cell transcriptomics revealed that sarcoma denervation was associated with phenotypic alterations in both OS tumor cells and cells within the tumor microenvironment, and with reduced calcitonin gene-related peptide (CGRP) and vascular endothelial growth factor (VEGF) signaling. Multimodal and multi-omics analyses of human OS bone samples and human dorsal root ganglia neurons further implicated peripheral innervation and neurotrophin signaling in OS tumor biology. In order to curb tumor-associated axonal ingrowth, we next leveraged FDA-approved bupivacaine liposomes leading to significant reductions in sarcoma growth, vascularity, as well as alleviation of pain. In sum, TrkA-expressing peripheral neurons positively regulate key aspects of OS progression and sensory neural inhibition appears to disrupt calcitonin receptor signaling (CALCR) and VEGF signaling within the sarcoma microenvironment leading to significantly reduced tumor growth and improved survival. These data suggest that interventions to prevent pathological innervation of osteosarcoma represent a novel adjunctive therapy to improve clinical outcomes and survival.
Collapse
|
8
|
Pinho-Ribeiro FA. Hide-and-sick: How bacteria manipulate a neural circuit that makes you sick. Neuron 2024; 112:1381-1383. [PMID: 38697021 DOI: 10.1016/j.neuron.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024]
Abstract
Infections frequently cause behavioral changes, known as sickness behavior. In a recent study,1 Yipp and collaborators discovered a sensory circuit that is activated by a bacterial lipopolysaccharide during lung infection and drives sickness behaviors independent of inflammation. Biofilm-producing bacteria, however, avoid activating this lung-brain circuit, resulting in infection without sickness behavior.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Division of Dermatology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|