1
|
Moravvej H, Vahidnezhad H, Mozafari N. Healing of Recalcitrant Chronic Ulcers by Hair Follicle-Containing Punch Grafts in Epidermolysis Bullosa. Dermatol Surg 2025; 51:335-337. [PMID: 39347630 DOI: 10.1097/dss.0000000000004412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Affiliation(s)
- Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Dermatology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nikoo Mozafari
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lázaro-Martínez JL, García-Madrid M, López-Moral M, García-Morales E, Molines-Barroso RJ, Tardáguila-García A. Skin Micro-Fragments for the Management of Diabetic Foot Ulcers: A Case Series. INT J LOW EXTR WOUND 2025; 24:51-58. [PMID: 39772727 PMCID: PMC12044201 DOI: 10.1177/15347346241311046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This prospective case series evaluated the clinical outcomes of skin micro-fragment therapy in managing hard-to-heal diabetic foot ulcers (DFU). A total of ten patients with chronic DFU, who were treated in a specialized diabetic foot unit, were included in this study. The primary outcome was the wound healing rate at 12 weeks. Secondary outcomes comprised the time to complete epithelialization, wound area reduction (WAR) at 4 and 12 weeks, and the incidence of adverse events. After treatment with hy-tissue micrograft (HT-MG), 6 (60%) of patients achieved complete wound closure within 12 weeks. The mean healing time was 7.8 ± 2.4 weeks. The mean WAR at 4 and 12 weeks was 67.2% ± 23.5% and 87.5% ± 24% respectively. The procedure was well tolerated with no complications observed in the donor site such as pain or infection. No adverse effects related to the infiltration procedure at wound site were recorded with a promising wound healing rate during the follow-up period. These results suggest that HT-MG could be a safe and effective treatment option for chronic DFU, promoting noteworthy wound healing and reducing healing times. Further studies are required to confirm these findings and assess long-term outcomes.
Collapse
Affiliation(s)
- José Luis Lázaro-Martínez
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Marta García-Madrid
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Mateo López-Moral
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Esther García-Morales
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Raúl J. Molines-Barroso
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Aroa Tardáguila-García
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
3
|
García-Madrid M, Sanz-Corbalán I, Tardáguila-García A, Molines-Barroso RJ, López-Moral M, Lázaro-Martínez JL. Punch Grafting for the Management of Hard-to-Heal Diabetic Foot Ulcers: A Prospective Case Series. INT J LOW EXTR WOUND 2021:15347346211031085. [PMID: 34255558 DOI: 10.1177/15347346211031085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Punch grafting is an alternative treatment to enhance wound healing which has been associated with promising clinical outcomes in various leg and foot wound types. We aimed to evaluate the clinical outcomes of punch grafting as a treatment for hard-to-heal diabetic foot ulcers (DFUs). Six patients with chronic neuropathic or neuroischemic DFUs with more than 6 months of evolution not responding to conventional treatment were included in a prospective case series between May 2017 and December 2020. All patients were previously debrided using an ultrasound-assisted wound debridement and then, grafted with 4 to 6 mm punch from the donor site that was in all cases the anterolateral aspect of the thigh. All patients were followed up weekly until wound healing. Four (66.7%) DFUs were located in the heel, 1 (16.7%) in the dorsal aspect of the foot and 1 (16.7%) in the Achilles tendon. The median evolution time was 172 (interquartile range [IQR], 25th-75th; 44-276) weeks with a median area of 5.9 (IQR; 1.87-37.12) cm2 before grafting. Complete epithelization was achieved in 3 (50%) patients at 12 weeks follow-up period with a mean time of 5.67 ± 2.88 weeks. Two of the remaining patients achieved wound healing at 32 and 24 weeks, respectively, and 1 patient showed punch graft unsuccessful in adhering. The median time of wound healing of all patients included in the study was 9.00 (IQR; 4.00-28.00) weeks. The wound area reduction (WAR) at 4 weeks was 38.66% and WAR at 12 weeks was 88.56%. No adverse effects related to the ulcer were registered through the follow-up period. Autologous punch graft is an easy procedure that promotes healing, achieving wound closure in chronic DFUs representing an alternative of treatment for hard-to-heal DFUs in which conservative treatment has been unsuccessful.
Collapse
Affiliation(s)
- Marta García-Madrid
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Irene Sanz-Corbalán
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Aroa Tardáguila-García
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raúl J Molines-Barroso
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Mateo López-Moral
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - José Luis Lázaro-Martínez
- Diabetic Foot Unit, Clínica Universitaria de Podología, Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
4
|
Abstract
Epidermolysis bullosa (EB) is a group of rare genetic disorders for which significant progress has been achieved in the development of molecular therapies in the last few decades. Such therapies require knowledge of mutant genes and specific mutations, some of them being allele specific. A relatively large number of clinical trials are ongoing and ascertaining the clinical efficacy of gene, protein or cell therapies or of repurposed drugs, mainly in recessive dystrophic EB. It is expected that some new drugs may emerge in the near future and that combinations of different approaches may result in improved treatment outcomes for individuals with EB.
Collapse
|
5
|
Ebens CL, McGrath JA, Riedl JA, Keith AR, Lilja G, Rusch S, Keene DR, Tufa SF, Riddle MJ, Shanley R, Van Heest AE, Tolar J. Immune tolerance of allogeneic haematopoietic cell transplantation supports donor epidermal grafting of recessive dystrophic epidermolysis bullosa chronic wounds. Br J Dermatol 2020; 184:1161-1169. [PMID: 32866988 DOI: 10.1111/bjd.19503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic wounds, a common morbidity in recessive dystrophic epidermolysis bullosa (RDEB), lack definitive therapies. OBJECTIVES To assess allogeneic epidermal skin grafts in terms of wound healing and durability over time. METHODS In a prospective, open-label clinical trial for postallogeneic haematopoietic cell transplantation (post-alloHCT) patients with RDEB, up to nine chronic wounds per patient were grafted over 1 year. Epidermal grafts measuring 5 cm2 were obtained from related alloHCT donors in the outpatient setting using the CELLUTOMETM Epidermal Harvesting System. Wounds were photographed and symptom inventories completed at baseline and 6, 12 and 52 weeks after grafting. The trial was registered at ClinicalTrials.gov (NCT02670837). RESULTS Between August 2016 and January 2019, eight patients with RDEB received a total of 35 epidermal allografts at a median of 1157 days (range 548-2884) post-alloHCT. The median (interquartile range) percentage reductions in wound surface area were 75% (52-94), 95% (72-100) and 100% (97-100) at 6, 12 and 52 weeks postgraft, respectively, each significantly reduced from baseline (P < 0·001). Donor harvest sites healed quickly without scarring. Biopsy evaluation at 1 year of an epidermal allograft site revealed wildtype type VII collagen (immunofluorescence), anchoring fibrils (electron microscopy), and full-thickness skin whole-DNA donor chimerism of 42% (compared with 16% in concurrently biopsied native skin). This strategy subsequently supported release of RDEB pseudosyndactyly. CONCLUSIONS The immune tolerance established by alloHCT supports successful adoptive transfer of donor epidermal grafts. Persistence of donor grafts in a single patient beyond 1 year and observed migration of donor-grafted cells into adjacent wound suggest that epidermal allografts include nonterminally differentiated cells and/or trigger recruitment of donor bone-marrow-derived cells to mediate wound healing.
Collapse
Affiliation(s)
- C L Ebens
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - J A McGrath
- St John's Institute of Dermatology, King's College London, London, England
| | - J A Riedl
- Department of Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, MN, USA
| | - A R Keith
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - G Lilja
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - S Rusch
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - D R Keene
- Microimaging Center, Shriners Hospital for Children, Portland, OR, USA
| | - S F Tufa
- Microimaging Center, Shriners Hospital for Children, Portland, OR, USA
| | - M J Riddle
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - R Shanley
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - A E Van Heest
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, USA
| | - J Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Keith AR, Twaroski K, Ebens CL, Tolar J. Leading edge: emerging drug, cell, and gene therapies for junctional epidermolysis bullosa. Expert Opin Biol Ther 2020; 20:911-923. [PMID: 32178539 PMCID: PMC7392816 DOI: 10.1080/14712598.2020.1740678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Junctional epidermolysis bullosa (JEB) is a rare inherited genetic disorder with limited treatments beyond palliative care. A major hallmark of JEB is skin blistering caused by functional loss or complete absence of major structural proteins of the skin. Impaired wound healing in patients with JEB gives rise to chronic cutaneous ulcers that require daily care. Wound care and infection control are the current standard of care for this patient population. AREAS COVERED This review covers research and clinical implementation of emerging drug, cell, and gene therapies for JEB. Current clinical trials use topical drug delivery to manipulate the inflammation and re-epithelialization phases of wound healing or promote premature stop codon readthrough to accelerate chronic wound closure. Allogeneic cell therapies for JEB have been largely unsuccessful, with autologous skin grafting emerging as a reliable method of resolving the cutaneous manifestations of JEB. Genetic correction and transplant of autologous keratinocytes have demonstrated persistent amelioration of chronic wounds in a subset of patients. EXPERT OPINION Emerging therapies address the cutaneous symptoms of JEB but are unable to attend to systemic manifestations of the disease. Investigations into the molecular mechanism(s) underpinning the failure of systemic allogeneic cell therapies are necessary to expand the range of effective JEB therapies.
Collapse
Affiliation(s)
- Allison R. Keith
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirk Twaroski
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christen L. Ebens
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Itoh M, Kawagoe S, Tamai K, Nakagawa H, Asahina A, Okano HJ. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system. J Dermatol Sci 2020; 98:163-172. [PMID: 32376152 DOI: 10.1016/j.jdermsci.2020.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a monogenic skin blistering disorder caused by mutations in the type VII collagen gene. A combination of biological technologies, including induced pluripotent stem cells (iPSCs) and several gene-editing tools, allows us to develop gene and cell therapies for such inherited diseases. However, the methodologies for gene and cell therapies must be continuously innovated for safe clinical use. OBJECTIVE In this study, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology to correct the pathogenic mutation in RDEB-specific iPSCs, and the piggyBac transposon system so that no residual gene fragments remained in the genome of iPSCs after correcting the mutation. METHODS For homologous recombination (HR)-based gene editing using CRISPR/Cas9, we designed guide RNA and template DNA including homologous sequences with drug-mediated selection cassette flanked by inverted repeat sequences of the transposon. HR reaction using CRISPR/Cas9 was induced in RDEB-specific iPSCs, and mutation-corrected iPSCs (MC-iPSCs) was obtained. Consequently, the selection cassette in the genome of MC-iPSCs was removed by transposase expression. RESULTS After CRISPR/Cas9-induced gene editing, we confirmed that the pathogenic mutation in RDEB-specific iPSCs was properly corrected. In addition, MC-iPSCs had no genetic footprint after removing the selection cassette by transposon system, and maintained their "stemness". When differentiating MC-iPSCs into keratinocytes, the expression of type VII collagen was restored. CONCLUSIONS Our study demonstrated one of the safer approaches to establish gene and cell therapies for skin hereditary disorders for future clinical use.
Collapse
Affiliation(s)
- Munenari Itoh
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shiho Kawagoe
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidemi Nakagawa
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Akihiko Asahina
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Rashidghamat E, McGrath JA. Novel and emerging therapies in the treatment of recessive dystrophic epidermolysis bullosa. Intractable Rare Dis Res 2017; 6:6-20. [PMID: 28357176 PMCID: PMC5359356 DOI: 10.5582/irdr.2017.01005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of inherited blistering diseases that affects ∼ 500,000 people worldwide. Clinically, individuals with EB have fragile skin and are susceptible to blistering following minimal trauma, with mucous membrane and other organ involvement in some subtypes. Within the spectrum of EB, ∼ 5% of affected individuals have the clinically more severe recessive dystrophic (RDEB) variant with a prevalence of 8 per one million of the population. RDEB is caused by loss-of-function mutations in the type VII collagen gene, COL7A1, which leads to reduced or absent type VII collagen (C7) and a paucity of structurally effective anchoring fibrils at the dermal-epidermal junction (DEJ). Currently, there is no cure for RDEB, although considerable progress has been made in testing novel treatments including gene therapy (lentiviral and gamma retroviral vectors for COL7A1 supplementation in keratinocytes and fibroblasts), as well as cell therapy (use of allogeneic fibroblasts, mesenchymal stromal cells (MSCs), and bone marrow transplantation (BMT)). Here, we review current treatment modalities available as well as novel and emerging therapies in the treatment of RDEB. Clinical trials of new translational therapies in RDEB offer hope for improved clinical management of patients as well as generating broader lessons for regenerative medicine that could be applicable to other inherited or acquired abnormalities of wound healing or scarring.
Collapse
Affiliation(s)
- Ellie Rashidghamat
- St. John's Institute of Dermatology, King's College London, London, United Kingdom
| | - John A. McGrath
- St. John's Institute of Dermatology, King's College London, London, United Kingdom
- Address correspondence to: Dr. John A. McGrath, Dermatology Research Laboratories, Floor 9 Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom. E-mail:
| |
Collapse
|
9
|
Seo J, Kim J, Nam KA, Zheng Z, Oh BH, Chung KY. Reconstruction of large wounds using a combination of negative pressure wound therapy and punch grafting after excision of acral lentiginous melanoma on the foot. J Dermatol 2015; 43:79-84. [PMID: 26173565 DOI: 10.1111/1346-8138.13017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/27/2015] [Indexed: 11/28/2022]
Abstract
Melanoma in darker-pigmented individuals often develops in an acral lentiginous fashion on the foot. After surgical removal of a tumor at this site, repair of the wound can be challenging. This is because there is an insufficient local skin pool and lack of mobility of the skin in this area. Moreover, functional aspects such as walking and weight bearing should be considered. We performed a combination treatment of negative pressure wound therapy (NPWT) and punch grafting on 15 patients, after wide excision of acral lentiginous melanomas on the foot, and compared these to 26 patients who underwent either secondary intention healing (SIH, n = 13) or NPWT (n = 13) alone. The punch grafting with NPWT group showed significantly shorter healing times than those of the other two groups. Evaluation of completely healed wounds using the Vancouver Burn Scar Assessment Scale revealed that the punch grafting group had mean values better, or comparable, to the SIH or NPWT group in four of the five scales (except pigmentation). As for complications, only one patient developed a wound infection after punch grafting. Further, by utilizing NPWT for fixation of punch grafts, it was possible to treat all subjects as outpatients after punch grafting. These results show that a combination treatment of NPWT and punch grafting is an excellent therapeutic option for post-wide excision wounds on the feet, with significantly shortened healing times and favorable cosmetic outcomes.
Collapse
Affiliation(s)
- Jimyung Seo
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jihee Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Ae Nam
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Zhenlong Zheng
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Yanbian University College of Medicine, Yanji, China
| | - Byung Ho Oh
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Keimyung University College of Medicine, Daegu, Korea
| | - Kee Yang Chung
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Has C, Nyström A. Epidermal Basement Membrane in Health and Disease. CURRENT TOPICS IN MEMBRANES 2015; 76:117-70. [PMID: 26610913 DOI: 10.1016/bs.ctm.2015.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skin, as the organ protecting the individual from environmental aggressions, constantly meets external insults and is dependent on mechanical toughness for its preserved function. Accordingly, the epidermal basement membrane (BM) zone has adapted to enforce tissue integrity. It harbors anchoring structures created through unique organization of common BM components and expression of proteins exclusive to the epidermal BM zone. Evidence for the importance of its correct assembly and the nonredundancy of its components for skin integrity is apparent from the multiple skin blistering disorders caused by mutations in genes coding for proteins associated with the epidermal BM and from autoimmune disorders in which autoantibodies target these molecules. However, it has become clear that these proteins not only provide mechanical support but are also critically involved in tissue homeostasis, repair, and regeneration. In this chapter, we provide an overview of the unique organization and components of the epidermal BM. A special focus will be given to its function during regeneration, and in inherited and acquired diseases.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Gostyński A, Pasmooij AMG, Jonkman MF. Successful therapeutic transplantation of revertant skin in epidermolysis bullosa. J Am Acad Dermatol 2014; 70:98-101. [PMID: 24176523 DOI: 10.1016/j.jaad.2013.08.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/16/2013] [Accepted: 08/23/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Epidermolysis bullosa (EB) is a group of genetic blistering diseases. Despite many efforts, treatment for EB remains symptomatic. Revertant mosaicism, coexistence of cells carrying disease-causing mutations with cells in which the inherited mutation is genetically corrected by a spontaneous genetic event (revertant cells) in 1 individual, can be found in EB. The naturally corrected revertant keratinocytes provide an opportunity for autologous cell therapy. OBJECTIVE We sought to locally treat EB by transplantation of revertant skin. METHODS Persistent ulcers in a patient with non-Herlitz junctional EB caused by mutations in the LAMB3 gene were treated by transplantation of split-thickness biopsy specimens from one of his revertant patches. RESULTS All transplanted biopsy specimens were accepted and complete re-epithelialization occurred within 14 days. During 18 months of follow-up, the patient never experienced blisters or wounds in the grafted area, nor in the healed donor site. Immunofluorescence and DNA sequencing showed that acceptor sites healed with transplanted revertant keratinocytes. LIMITATIONS Punch grafting allows only limited expansion of revertant skin. CONCLUSIONS We demonstrate that phenotypical and genotypical correction of skin in patients with revertant mosaicism by expansion of revertant skin might be a promising therapeutic option for cutaneous manifestations of EB.
Collapse
Affiliation(s)
- Antoni Gostyński
- Center for Blistering Diseases and Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Anna M G Pasmooij
- Center for Blistering Diseases and Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel F Jonkman
- Center for Blistering Diseases and Department of Dermatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
New findings in genodermatoses. Dermatol Clin 2013; 31:303-15. [PMID: 23557657 DOI: 10.1016/j.det.2012.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New technologies are accelerating the pace at which genetic defects leading to inherited skin disease are elucidated. Translation of these genetic discoveries into new therapies for patients with inherited skin diseases has not been as rapid but the pace is now accelerating. This article summarizes recent findings in genetic skin diseases, the scope of advances being made, the role of new DNA analysis technologies in these discoveries, as well as highlighting some examples of how an understanding of the genetic cause of inherited skin diseases can lead to therapeutic interventions for patients.
Collapse
|