1
|
Abdel-Mageed HM. Atopic dermatitis: a comprehensive updated review of this intriguing disease with futuristic insights. Inflammopharmacology 2025; 33:1161-1187. [PMID: 39918744 PMCID: PMC11914373 DOI: 10.1007/s10787-025-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 03/19/2025]
Abstract
Atopic dermatitis (AD) is a paradigmatic prevalent, long-lasting, and inflammatory skin condition with a diverse range of clinical manifestations. The etiology and clinical symptoms of AD are influenced by complex pathophysiological processes, which involve a strong genetic component, epidermal dysfunction, and immunological dysregulation, and a strong influence of other physiological and environmental factors. The FDA has approved targeted and well-tolerated immunomodulators including biologics like dupilumab and crisaborole, and small molecules such as baricitinib, as novel therapies for AD. They effectively treat AD but are too expensive for most patients. The review provides an update on the state of knowledge of AD pathogenesis, discusses the available diagnostic and scoring indices, and provides a scientific foundation for treatment methods for AD. This review also presents data on clinical efficacy of innovative treatments' considering recent guidelines, emphasizing the newest medications and ongoing trials. Finally, the new implication of artificial intelligence (AI) in AD management is explored, where AI can speed up diagnosis and therapy. The PubMed, Google Scholar, and ScienceDirect databases were used for this review.
Collapse
Affiliation(s)
- Heidi M Abdel-Mageed
- Molecular Biology Department, National Research Centre, El Behoth St, Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Odunitan TT, Apanisile BT, Afolabi JA, Adeniwura PO, Akinboade MW, Ibrahim NO, Alare KP, Saibu OA, Adeosun OA, Opeyemi HS, Ayiti KS. Beyond Conventional Drug Design: Exploring the Broad-Spectrum Efficacy of Antimicrobial Peptides. Chem Biodivers 2025; 22:e202401349. [PMID: 39480053 DOI: 10.1002/cbdv.202401349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
In the fight against pathogenic infections, antimicrobial peptides (AMPs) constitute a novel and promising class of compounds that defies accepted drug development conventions like Lipinski's rule. AMPs are remarkably effective against a variety of pathogens, including viruses, bacteria, parasites, and fungi. Their effectiveness, despite differing from traditional drug-like properties defies accepted standards. This review investigates the complex world of AMPs with an emphasis on their structural and physicochemical properties, which include size, sequence, structure, charge, and half-life. These distinguishing characteristics set AMPs apart from conventional therapeutics that adhere to Lipinski's rules and greatly contribute to their selective targeting, reduction of resistance, multifunctionality, and broad-spectrum efficacy. In contrast to traditional drugs that follow Lipinski's guidelines, AMPs have special qualities that play a big role in their ability to target specific targets, lower resistance, and work across a wide range of conditions. Our work is unique because of this nuanced investigation, which offers a new viewpoint on the potential of AMPs in tackling the worldwide problem of antibiotic resistance. In the face of the escalating global challenge of antibiotic resistance, antimicrobial peptides (AMPs) are innovative antimicrobial agents with unique mechanisms of action that challenge traditional Lipinski's Rule. They can withstand various microbial threats through membrane disruption, intracellular targeting, and immunomodulation. AMP versatility sets them apart from other antibiotics and their potential to address microbial infections and antibiotic resistance is growing. To fully unlock their potential, traditional drug development approaches need to be reconsidered. AMPs have revolutionary potential, paving the way for innovative solutions to health issues and transforming the antimicrobial therapy landscape.
Collapse
Affiliation(s)
- Tope T Odunitan
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Justinah A Afolabi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Praise O Adeniwura
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Modinat W Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Nigeria
| | - Najahtulahi O Ibrahim
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Kehinde P Alare
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oluwatosin A Saibu
- Department of Chemistry and Biochemistry, New Mexico State University, USA, Ibadan
| | - Oyindamola A Adeosun
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Hammed S Opeyemi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Kolawole S Ayiti
- Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
3
|
Wu J, Li L, Zhang T, Lu J, Tai Z, Zhu Q, Chen Z. The epidermal lipid-microbiome loop and immunity: Important players in atopic dermatitis. J Adv Res 2025; 68:359-374. [PMID: 38460775 PMCID: PMC11785582 DOI: 10.1016/j.jare.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/10/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND The promotion of epidermal barrier dysfunction is attributed to abnormalities in the lipid-microbiome positive feedback loop which significantly influences the imbalance of the epithelial immune microenvironment (EIME) in atopic dermatitis (AD). This imbalance encompasses impaired lamellar membrane integrity, heightened exposure to epidermal pathogens, and the regulation of innate and adaptive immunity. The lipid-microbiome loop is substantially influenced by intense adaptive immunity which is triggered by abnormal loop activity and affects the loop's integrity through the induction of atypical lipid composition and responses to dysregulated epidermal microbes. Immune responses participate in lipid abnormalities within the EIME by downregulating barrier gene expression and are further cascade-amplified by microbial dysregulation which is instigated by barrier impairment. AIM OF REVIEW This review examines the relationship between abnormal lipid composition, microbiome disturbances, and immune responses in AD while progressively substantiating the crosstalk mechanism among these factors. Based on this analysis, the "lipid-microbiome" positive feedback loop, regulated by immune responses, is proposed. KEY SCIENTIFIC CONCEPTS OF REVIEW The review delves into the impact of adaptive immune responses that regulate the EIME, driving AD, and investigates potential mechanisms by which lipid supplementation and probiotics may alleviate AD through the up-regulation of the epidermal barrier and modulation of immune signaling. This exploration offers support for targeting the EIME to attenuate AD.
Collapse
Affiliation(s)
- Junchao Wu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| | - Zhongjian Chen
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai, 200443, China.
| |
Collapse
|
4
|
Dzurová L, Holásková E, Pospíšilová H, Schneider Rauber G, Frébortová J. Cathelicidins: Opportunities and Challenges in Skin Therapeutics and Clinical Translation. Antibiotics (Basel) 2024; 14:1. [PMID: 39858288 PMCID: PMC11762488 DOI: 10.3390/antibiotics14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Cathelicidins are a group of cationic, amphipathic peptides that play a vital role in the innate immune response of many vertebrates, including humans. Produced by immune and epithelial cells, they serve as natural defenses against a wide range of pathogens, including bacteria, viruses, and fungi. In humans, the cathelicidin LL-37 is essential for wound healing, maintaining skin barrier integrity, and combating infections. Cathelicidins of different origins have shown potential in treating various skin conditions, including melanoma, acne, and diabetic foot ulcers. Despite their promising therapeutic potential, cathelicidins face significant challenges in clinical application. Many peptide-based therapies have failed in clinical trials due to unclear efficacy and safety concerns. Additionally, the emergence of bacterial resistance, which contradicts initial claims of non-resistance, further complicates their development. To successfully translate cathelicidins into effective clinical treatments, therefore, several obstacles must be addressed, including a better understanding of their mechanisms of action, sustainable large-scale production, optimized formulations for drug delivery and stability, and strategies to overcome microbial resistance. This review examines the current knowledge of cathelicidins and their therapeutic applications and discusses the challenges that hinder their clinical use and must be overcome to fully exploit their potential in medicine.
Collapse
Affiliation(s)
- Lenka Dzurová
- Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 77900 Olomouc, Czech Republic; (E.H.); (H.P.); (J.F.)
| | | | | | | | | |
Collapse
|
5
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
7
|
Saheb Kashaf S, Kong HH. Adding Fuel to the Fire? The Skin Microbiome in Atopic Dermatitis. J Invest Dermatol 2024; 144:969-977. [PMID: 38530677 PMCID: PMC11034722 DOI: 10.1016/j.jid.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 03/28/2024]
Abstract
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease characterized by epidermal barrier dysfunction, immune system dysregulation, and skin microbiome alterations. Skin microbiome studies in AD have demonstrated that disease flares are associated with microbial shifts, particularly Staphylococcus aureus predominance. AD-associated S. aureus strains differ from those in healthy individuals across various genomic loci, including virulence factors, adhesion proteins, and proinflammatory molecules-which may contribute to complex microbiome barrier-immune system interactions in AD. Different microbially based treatments for AD have been explored, and their future therapeutic successes will depend on a deeper understanding of the potential microbial contributions to the disease.
Collapse
Affiliation(s)
- Sara Saheb Kashaf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Heidi H Kong
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
8
|
Cresti L, Cappello G, Pini A. Antimicrobial Peptides towards Clinical Application-A Long History to Be Concluded. Int J Mol Sci 2024; 25:4870. [PMID: 38732089 PMCID: PMC11084544 DOI: 10.3390/ijms25094870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.
Collapse
Affiliation(s)
- Laura Cresti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Alessandro Pini
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
| |
Collapse
|
9
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
10
|
Lazar M, Zhang AD, Vashi NA. Topical Treatments in Atopic Dermatitis: An Expansive Review. J Clin Med 2024; 13:2185. [PMID: 38673458 PMCID: PMC11050343 DOI: 10.3390/jcm13082185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin condition found worldwide. It impacts patient quality of life (QoL) and is thought to arise as an inflammatory response to epidermal barrier dysfunction and hypersensitivity. AD can lead to large out-of-pocket costs and increased healthcare expenses over a lifetime. An analysis of all randomized control trials conducted since 1990 on topical therapies for AD were reviewed, including 207 trials in the final analysis. It was found that an average of 226 patients were enrolled over 2.43 arms. Common topical treatments included corticosteroids, calcineurin inhibitors, JAK inhibitors, and phosphodiesterase inhibitors. The most utilized tools to identify treatment efficacy were the EASI, IGA, SCORAD, and PGA. There was a paucity of data on trials that evaluated efficacy, QoL, and cost of treatment simultaneously. This review highlights the need for comprehensive trials that evaluate multiple aspects of treatment, including financial cost and QoL impact, to ensure each patient has the best treatment modality for the management of their AD.
Collapse
Affiliation(s)
| | | | - Neelam A. Vashi
- Department of Dermatology, Boston University School of Medicine, 609 Albany St., J502, Boston, MA 02118, USA
| |
Collapse
|
11
|
Zhang M, Yang B, Shi J, Wang Z, Liu Y. Host defense peptides mitigate the spread of antibiotic resistance in physiologically relevant condition. Antimicrob Agents Chemother 2024; 68:e0126123. [PMID: 38415983 PMCID: PMC10994823 DOI: 10.1128/aac.01261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Antibiotic resistance represents a significant challenge to public health and human safety. The primary driver behind the dissemination of antibiotic resistance is the horizontal transfer of plasmids. Current conjugative transfer assay is generally performed in a standardized manner, ignoring the effect of the host environment. Host defense peptides (HDPs) possess a wide range of biological targets and play an essential role in the innate immune system. Herein, we reveal that sub-minimum inhibitory concentrations of HDPs facilitate the conjugative transfer of RP4-7 plasmid in the Luria Broth medium, and this observation is reversed in the RPMI medium, designed to simulate the host environment. Out of these HDPs, indolicidin (Ind), a cationic tridecapeptide from bovine neutrophils, significantly inhibits the conjugation of multidrug resistance plasmids in a dose-dependent manner, including blaNDM- and tet(X4)-bearing plasmids. We demonstrate that the addition of Ind to RPMI medium as the incubation substrate downregulates the expression of conjugation-related genes. In addition, Ind weakens the tricarboxylic acid cycle, impedes the electron transport chain, and disrupts the proton motive force, consequently diminishing the synthesis of adenosine triphosphate and limiting the energy supply. Our findings highlight the importance of the host-like environments for the development of horizontal transfer inhibitors and demonstrate the potential of HDPs in preventing the spread of resistance plasmids.
Collapse
Affiliation(s)
- Miao Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Greenzaid JD, Chan LJ, Chandani BM, Kiritsis NR, Feldman SR. Microbiome modulators for atopic eczema: a systematic review of experimental and investigational therapeutics. Expert Opin Investig Drugs 2024; 33:415-430. [PMID: 38441984 DOI: 10.1080/13543784.2024.2326625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a common inflammatory cutaneous disease that arises due to dysregulation of the Th2 immune response, impaired skin barrier integrity, and dysbiosis of the skin and gut microbiota. An abundance of Staphylococcus aureus biofilms in AD lesions increases the Th2 immune response, and gut bacteria release breakdown products such as Short Chain Fatty Acids that regulate the systemic immune response. AREAS COVERED We aim to evaluate therapies that modulate the microbiome in humans and discuss the clinical implications of these treatments. We performed a review of the literature in which 2,673 records were screened, and describe the findings of 108 studies that were included after full-text review. All included studies discussed the effects of therapies on the human microbiome and AD severity. Oral probiotics, topical probiotics, biologics, and investigational therapies were included in our analysis. EXPERT OPINION Oral probiotics demonstrate mixed efficacy at relieving AD symptoms. Topical probiotics reduce S. aureus abundance in AD lesional skin, yet for moderate-severe disease, these therapies may not reduce AD severity scores to the standard of biologics. Dupilumab and tralokinumab target key inflammatory pathways in AD and modulate the skin microbiome, further improving disease severity.
Collapse
Affiliation(s)
- Jonathan D Greenzaid
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lina J Chan
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brittany M Chandani
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas R Kiritsis
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
13
|
Yang K, Yong JY, He Y, Yu L, Luo GN, Chen J, Ge YM, Yang YJ, Ding WJ, Hu YM. Melatonin restores DNFB-induced dysbiosis of skin microbiota in a mouse model of atopic dermatitis. Life Sci 2024; 342:122513. [PMID: 38387700 DOI: 10.1016/j.lfs.2024.122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND The epidermic microbiota plays crucial roles in the pathogenesis of atopic dermatitis (AD), a common inflammatory skin disease. Melatonin (MLT) has been shown to ameliorate skin damage in AD patients, yet the underlying mechanism is unclear. METHODS Using 2,4-dinitrofluorobenzene (DNFB) to induce an AD model, MLT intervention was applied for 14 days to observe its pharmaceutical effect. Skin lesions were observed using HE staining, toluidine blue staining and electron microscopy. Dermal proinflammatory factor (IL-4 and IL-13) and intestinal barrier indices (ZO1 and Occludin) were assessed by immunohistochemistry and RT-qPCR, respectively. The dysbiotic microbiota was analyzed using 16S rRNA sequencing. RESULTS MLT significantly improved skin lesion size; inflammatory status (mast cells, IgE, IL-4, and IL-13); and the imbalance of the epidermal microbiota in AD mice. Notably, Staphylococcus aureus is the key bacterium associated with dysbiosis of the epidermal microbiota and may be involved in the fine modulation of mast cells, IL-4, IL-13 and IgE. Correlation analysis between AD and the gut revealed that intestinal dysbiosis occurred earlier than that of the pathological structure in the gut. CONCLUSION Melatonin reverses DNFB-induced skin damage and epidermal dysbiosis, especially in S. aureus.
Collapse
Affiliation(s)
- Kun Yang
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Jiang-Yan Yong
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, 610072, SichuanProvince, China
| | - Yan He
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Lu Yu
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Gui-Ning Luo
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Jilan Chen
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Yi-Man Ge
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, 610072, SichuanProvince, China
| | - You-Jun Yang
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Yi-Mei Hu
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, 610072, SichuanProvince, China.
| |
Collapse
|
14
|
Ragamin A, Schappin R, de Graaf M, Tupker RA, Fieten KB, van Mierlo MMF, Bronner MB, Romeijn GLE, Sloot MM, Boesjes CM, van der Rijst LP, Arents BWM, Rustemeyer T, Schuttelaar MLA, Pasmans SGMA. Effectiveness of antibacterial therapeutic clothing vs. nonantibacterial therapeutic clothing in patients with moderate-to-severe atopic dermatitis: a randomized controlled observer-blind pragmatic trial (ABC trial). Br J Dermatol 2024; 190:342-354. [PMID: 37936331 DOI: 10.1093/bjd/ljad437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Increased Staphylococcus aureus (SA) colonization is considered an important factor in the pathogenesis of atopic dermatitis (AD). Antibacterial therapeutic clothing aims to reduce SA colonization and AD inflammation; however, its role in the management of AD remains poorly understood. OBJECTIVES To investigate the effectiveness of antibacterial therapeutic clothing + standard topical treatment in patients with moderate-to-severe AD vs. standard therapeutic clothing + standard topical treatment; and, if effectiveness was demonstrated, to demonstrate its cost-effectiveness. METHODS A pragmatic double-blinded multicentre randomized controlled trial (NCT04297215) was conducted in patients of all ages with moderate-to-severe AD. Patients were centrally randomized 1 : 1 : 1 to receive standard therapeutic clothing or antibacterial clothing based on chitosan or silver. The primary outcome was the between-group difference in Eczema Area and Severity Index (EASI) measured over 52 weeks. Secondary outcomes included patient-reported outcomes (PROs), topical corticosteroid (TCS) use, SA colonization, safety and cost-effectiveness. Outcomes were assessed by means of (generalized) linear mixed-model analyses. RESULTS Between 16 March 2020 and 20 December 2021, 171 patients were enrolled. In total, 159 patients were included (54 in the standard therapeutic clothing group, 50 in the chitosan group and 55 in the silver group). Adherence was high [median 7 nights a week wear (interquartile range 3-7)]. Median EASI scores at baseline and at 4, 12, 26 and 52 weeks were 11.8, 4.3, 4.6, 4.2 and 3.6, respectively, in the standard therapeutic clothing group vs. 11.3, 5.0, 3.0, 3.0 and 4.4, respectively, in the chitosan group, and 11.6, 5.0, 5.4, 4.6 and 5.8, respectively, in the silver group. No differences in EASI over 52 weeks between the standard therapeutic clothing group, the chitosan group [-0.1, 95% confidence interval (CI) -0.3 to 0.2; P = 0.53] or the silver group (-0.1, 95% CI -0.3 to 0.2; P = 0.58) were found. However, a small significant group × time interaction effect between the standard and silver groups was found (P = 0.03), in which the silver group performed worse after 26 weeks. No differences between groups were found in PROs, TCS use, SA skin colonization and healthcare utilization. No severe adverse events or silver absorption were observed. CONCLUSIONS The results of this study suggest no additional benefits of antibacterial agents in therapeutic clothing in patients with moderate-to-severe AD.
Collapse
Affiliation(s)
- Aviël Ragamin
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Dermatology, Center of Pediatric Dermatology, Sophia Children's Hospital, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Renske Schappin
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Dermatology, Center of Pediatric Dermatology, Sophia Children's Hospital, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marlies de Graaf
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ron A Tupker
- Department of Dermatology, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Karin B Fieten
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
- Dutch Asthma Center Davos, Davos, Switzerland
| | - Minke M F van Mierlo
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Madelon B Bronner
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Geertruida L E Romeijn
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Manon M Sloot
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Celeste M Boesjes
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lisa P van der Rijst
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bernd W M Arents
- Dutch Association for People with Atopic Dermatitis, Nijkerk, the Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology and Allergology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marie L A Schuttelaar
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Suzanne G M A Pasmans
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Dermatology, Center of Pediatric Dermatology, Sophia Children's Hospital, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
15
|
Pagan L, Huisman BW, van der Wurff M, Naafs RGC, Schuren FHJ, Sanders IMJG, Smits WK, Zwittink RD, Burggraaf J, Rissmann R, Piek JMJ, Henderickx JGE, van Poelgeest MIE. The vulvar microbiome in lichen sclerosus and high-grade intraepithelial lesions. Front Microbiol 2023; 14:1264768. [PMID: 38094635 PMCID: PMC10716477 DOI: 10.3389/fmicb.2023.1264768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/01/2023] [Indexed: 01/25/2024] Open
Abstract
Background The role of the vulvar microbiome in the development of (pre)malignant vulvar disease is scarcely investigated. The aim of this exploratory study was to analyze vulvar microbiome composition in lichen sclerosus (LS) and vulvar high-grade squamous intraepithelial lesions (HSIL) compared to healthy controls. Methods Women with vulvar lichen sclerosus (n = 10), HSIL (n = 5) and healthy controls (n = 10) were included. Swabs were collected from the vulva, vagina and anal region for microbiome characterization by metagenomic shotgun sequencing. Both lesional and non-lesional sites were examined. Biophysical assessments included trans-epidermal water loss for evaluation of the vulvar skin barrier function and vulvar and vaginal pH measurements. Results Healthy vulvar skin resembled vaginal, anal and skin-like microbiome composition, including the genera Prevotella, Lactobacillus, Gardnerella, Staphylococcus, Cutibacterium, and Corynebacterium. Significant differences were observed in diversity between vulvar skin of healthy controls and LS patients. Compared to the healthy vulvar skin, vulvar microbiome composition of both LS and vulvar HSIL patients was characterized by significantly higher proportions of, respectively, Papillomaviridae (p = 0.045) and Alphapapillomavirus (p = 0.002). In contrast, the Prevotella genus (p = 0.031) and Bacteroidales orders (p = 0.038) were significantly less abundant in LS, as was the Actinobacteria class (p = 0.040) in vulvar HSIL. While bacteria and viruses were most abundant, fungal and archaeal taxa were scarcely observed. Trans-epidermal water loss was higher in vulvar HSIL compared to healthy vulvar skin (p = 0.043). Conclusion This study is the first to examine the vulvar microbiome through metagenomic shotgun sequencing in LS and HSIL patients. Diseased vulvar skin presents a distinct signature compared to healthy vulvar skin with respect to bacterial and viral fractions of the microbiome. Key findings include the presence of papillomaviruses in LS as well as in vulvar HSIL, although LS is generally considered an HPV-independent risk factor for vulvar dysplasia. This exploratory study provides clues to the etiology of vulvar premalignancies and may act as a steppingstone for expanding the knowledge on potential drivers of disease progression.
Collapse
Affiliation(s)
- Lisa Pagan
- Centre for Human Drug Research, Leiden, Netherlands
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, Netherlands
| | - Bertine W. Huisman
- Centre for Human Drug Research, Leiden, Netherlands
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Frank H. J. Schuren
- Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Ingrid M. J. G. Sanders
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
- Department of Medical Microbiology, Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Romy D. Zwittink
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
- Department of Medical Microbiology, Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, Netherlands
- Leiden Amsterdam Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, Netherlands
- Leiden Amsterdam Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jurgen M. J. Piek
- Department of Obstetrics and Gynaecology, Catharina Cancer Institute, Eindhoven, Netherlands
| | - Jannie G. E. Henderickx
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, Netherlands
- Department of Medical Microbiology, Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte I. E. van Poelgeest
- Centre for Human Drug Research, Leiden, Netherlands
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Rousel J, Saghari M, Pagan L, Nădăban A, Gambrah T, Theelen B, de Kam ML, Haakman J, van der Wall HEC, Feiss GL, Niemeyer-van der Kolk T, Burggraaf J, Bouwstra JA, Rissmann R, van Doorn MBA. Treatment with the Topical Antimicrobial Peptide Omiganan in Mild-to-Moderate Facial Seborrheic Dermatitis versus Ketoconazole and Placebo: Results of a Randomized Controlled Proof-of-Concept Trial. Int J Mol Sci 2023; 24:14315. [PMID: 37762625 PMCID: PMC10531869 DOI: 10.3390/ijms241814315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Facial seborrheic dermatitis (SD) is an inflammatory skin disease characterized by erythematous and scaly lesions on the skin with high sebaceous gland activity. The yeast Malassezia is regarded as a key pathogenic driver in this disease, but increased Staphylococcus abundances and barrier dysfunction are implicated as well. Here, we evaluated the antimicrobial peptide omiganan as a treatment for SD since it has shown both antifungal and antibacterial activity. A randomized, patient- and evaluator-blinded trial was performed comparing the four-week, twice daily topical administration of omiganan 1.75%, the comparator ketoconazole 2.00%, and placebo in patients with mild-to-moderate facial SD. Safety was monitored, and efficacy was determined by clinical scoring complemented with imaging. Microbial profiling was performed, and barrier integrity was assessed by trans-epidermal water loss and ceramide lipidomics. Omiganan was safe and well tolerated but did not result in a significant clinical improvement of SD, nor did it affect other biomarkers, compared to the placebo. Ketoconazole significantly reduced the disease severity compared to the placebo, with reduced Malassezia abundances, increased microbial diversity, restored skin barrier function, and decreased short-chain ceramide Cer[NSc34]. No significant decreases in Staphylococcus abundances were observed compared to the placebo. Omiganan is well tolerated but not efficacious in the treatment of facial SD. Previously established antimicrobial and antifungal properties of omiganan could not be demonstrated. Our multimodal characterization of the response to ketoconazole has reaffirmed previous insights into its mechanism of action.
Collapse
Affiliation(s)
- Jannik Rousel
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Mahdi Saghari
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Lisa Pagan
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Andreea Nădăban
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Tom Gambrah
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, 3508 AD Utrecht, The Netherlands
| | | | - Jorine Haakman
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
| | | | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Joke A. Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
- Leiden University Medical Center, Leiden University, 2333 ZA Leiden, The Netherlands
| | - Martijn B. A. van Doorn
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Department of Dermatology, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
17
|
Zhao H, Ma X, Song J, Jiang J, Fei X, Luo Y, Ru Y, Luo Y, Gao C, Kuai L, Li B. From gut to skin: exploring the potential of natural products targeting microorganisms for atopic dermatitis treatment. Food Funct 2023; 14:7825-7852. [PMID: 37599562 DOI: 10.1039/d3fo02455e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. Recent studies have revealed that interactions between pathogenic microorganisms, which have a tendency to parasitize the skin of AD patients, play a significant role in the progression of the disease. Furthermore, specific species of commensal bacteria in the human intestinal tract can have a profound impact on the immune system by promoting inflammation and pruritogenesis in AD, while also regulating adaptive immunity. Natural products (NPs) have emerged as promising agents for the treatment of various diseases. Consequently, there is growing interest in utilizing natural products as a novel therapeutic approach for managing AD, with a focus on modulating both skin and gut microbiota. In this review, we discuss the mechanisms and interplay between the skin and gut microbiota in relation to AD. Additionally, we provide a comprehensive overview of recent clinical and fundamental research on NPs targeting the skin and gut microbiota for AD treatment. We anticipate that our work will contribute to the future development of NPs and facilitate research on microbial mechanisms, based on the efficacy of NPs in treating AD.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
18
|
Gatmaitan JG, Lee JH. Challenges and Future Trends in Atopic Dermatitis. Int J Mol Sci 2023; 24:11380. [PMID: 37511138 PMCID: PMC10380015 DOI: 10.3390/ijms241411380] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Atopic dermatitis represents a complex and multidimensional interaction that represents potential fields of preventive and therapeutic management. In addition to the treatment armamentarium available for atopic dermatitis, novel drugs targeting significant molecular pathways in atopic dermatitis biologics and small molecules are also being developed given the condition's complex pathophysiology. While most of the patients are expecting better efficacy and long-term control, the response to these drugs would still depend on numerous factors such as complex genotype, diverse environmental triggers and microbiome-derived signals, and, most importantly, dynamic immune responses. This review article highlights the challenges and the recently developed pharmacological agents in atopic dermatitis based on the molecular pathogenesis of this condition, creating a specific therapeutic approach toward a more personalized medicine.
Collapse
Affiliation(s)
- Julius Garcia Gatmaitan
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Gatmaitan Medical and Skin Center, Baliuag 3006, Bulacan, Philippines
- Skines Aesthetic and Laser Center, Quezon City 1104, Metro Manila, Philippines
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
19
|
Facheris P, Jeffery J, Del Duca E, Guttman-Yassky E. The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell Mol Immunol 2023; 20:448-474. [PMID: 36928371 PMCID: PMC10203371 DOI: 10.1038/s41423-023-00992-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease, and it is considered a complex and heterogeneous condition. Different phenotypes of AD, defined according to the patient age at onset, race, and ethnic background; disease duration; and other disease characteristics, have been recently described, underlying the need for a personalized treatment approach. Recent advancements in understanding AD pathogenesis resulted in a real translational revolution and led to the exponential expansion of the therapeutic pipeline. The study of biomarkers in clinical studies of emerging treatments is helping clarify the role of each cytokine and immune pathway in AD and will allow addressing the unique immune fingerprints of each AD subset. Personalized medicine will be the ultimate goal of this targeted translational research. In this review, we discuss the changes in the concepts of both the pathogenesis of and treatment approach to AD, highlight the scientific rationale behind each targeted treatment and report the most recent clinical efficacy data.
Collapse
Affiliation(s)
- Paola Facheris
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Humanitas Clinical and Research Center, Department of Dermatology, Rozzano, Milano, Italy
| | - Jane Jeffery
- Duke University School of Medicine, Durham, NC, USA
| | - Ester Del Duca
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat 2023; 68:100954. [PMID: 36905712 DOI: 10.1016/j.drup.2023.100954] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
The problem of drug resistance due to long-term use of antibiotics has been a concern for years. As this problem grows worse, infections caused by multiple bacteria are expanding rapidly and are extremely detrimental to human health. Antimicrobial peptides (AMPs) are a good alternative to current antimicrobials with potent antimicrobial activity and unique antimicrobial mechanisms, which have advantages over traditional antibiotics in fighting against drug-resistant bacterial infections. Currently, researchers have conducted clinical investigations on AMPs for drug-resistant bacterial infections while integrating new technologies in the development of AMPs, such as changing amino acid structure of AMPs and using different delivery methods for AMPs. This article introduces the basic properties of AMPs, deliberates the mechanism of drug resistance in bacteria and the therapeutic mechanism of AMPs. The current disadvantages and advances of AMPs in combating drug-resistant bacterial infections are also discussed. This article provides important insights into the research and clinical application of new AMPs for drug-resistant bacterial infections.
Collapse
|
21
|
Kondratuk K, Netravali IA, Castelo-Soccio L. Modern Interventions for Pediatric Atopic Dermatitis: An Updated Pharmacologic Approach. Dermatol Ther (Heidelb) 2023; 13:367-389. [PMID: 36534318 PMCID: PMC9884734 DOI: 10.1007/s13555-022-00868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Pediatric atopic dermatitis (AD) has historically challenged dermatologists given the variable response of patients to treatment and limited available therapeutic options, often with significant potential side effects. Over the last decade, targeted treatments including dupilumab and Janus kinase (JAK) inhibitors have emerged as significant treatment advances. An updated therapeutic approach for incorporating these new practice-changing medications can help clinicians manage these challenging patients. In this review, we discuss emerging topical and systemic (oral and injectable) treatments in pediatric AD, including topical PDE4 inhibitors and tapinarof, oral JAK inhibitors, and injected biologics including IL-4Rα inhibitor dupilumab, IL-13 inhibitor tralokinumab, IL-13Rα inhibitor lebrikizumab, IL-31Rα inhibitor nemolizumab, and IL-5Rα inhibitor benralizumab. We also review experimental agents in early clinical trials, such as targeted microbiome transplant lotions/antimicrobials, which may gain relevance in AD treatment. Finally, we propose a therapeutic approach for pediatric AD that incorporates newer therapies including dupilumab and JAK inhibitors, recognizing that these agents may not be universally available or approved. Further trials that include pediatric patients, especially head-to-head studies among therapeutic classes, are needed to clarify the role of emerging treatments.
Collapse
Affiliation(s)
| | | | - Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD OP1320892 USA
| |
Collapse
|
22
|
Pinto LM, Chiricozzi A, Calabrese L, Mannino M, Peris K. Novel Therapeutic Strategies in the Topical Treatment of Atopic Dermatitis. Pharmaceutics 2022; 14:2767. [PMID: 36559261 PMCID: PMC9788207 DOI: 10.3390/pharmaceutics14122767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Topical agents that are currently available for the treatment of atopic dermatitis may represent a valid approach in the management of mild or mild-moderate cases, whereas they are often supplemented with systemic therapies for handling more complex or unresponsive cases. The most used compounds include topical corticosteroids and calcineurin inhibitors, although their use might be burdened by side effects, poor response, and low patient compliance. Consequently, new innovative drugs with higher efficacy and safety both in the short and long term need to be integrated into clinical practice. A deeper understanding of the complex pathogenesis of the disease has led to identifying new therapeutic targets and to the development of innovative therapeutics. This narrative review aims to collect data on selected promising topical drugs that are in an advanced stage of development.
Collapse
Affiliation(s)
- Lorenzo Maria Pinto
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Chiricozzi
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Calabrese
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Mannino
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ketty Peris
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
23
|
Hao Z, Chen R, Chai C, Wang Y, Chen T, Li H, Hu Y, Feng Q, Li J. Antimicrobial peptides for bone tissue engineering: Diversity, effects and applications. Front Bioeng Biotechnol 2022; 10:1030162. [PMID: 36277377 PMCID: PMC9582762 DOI: 10.3389/fbioe.2022.1030162] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Bone tissue engineering has been becoming a promising strategy for surgical bone repair, but the risk of infection during trauma repair remains a problematic health concern worldwide, especially for fracture and infection-caused bone defects. Conventional antibiotics fail to effectively prevent or treat bone infections during bone defect repair because of drug-resistance and recurrence, so novel antibacterial agents with limited resistance are highly needed for bone tissue engineering. Antimicrobial peptides (AMPs) characterized by cationic, hydrophobic and amphipathic properties show great promise to be used as next-generation antibiotics which rarely induce resistance and show potent antibacterial efficacy. In this review, four common structures of AMPs (helix-based, sheet-based, coil-based and composite) and related modifications are presented to identify AMPs and design novel analogs. Then, potential effects of AMPs for bone infection during bone repair are explored, including bactericidal activity, anti-biofilm, immunomodulation and regenerative properties. Moreover, we present distinctive applications of AMPs for topical bone repair, which can be either used by delivery system (surface immobilization, nanoparticles and hydrogels) or used in gene therapy. Finally, future prospects and ongoing challenges are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Chai
- Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinyu Feng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jingfeng Li,
| |
Collapse
|
24
|
Sideris N, Paschou E, Bakirtzi K, Kiritsi D, Papadimitriou I, Tsentemeidou A, Sotiriou E, Vakirlis E. New and Upcoming Topical Treatments for Atopic Dermatitis: A Review of the Literature. J Clin Med 2022; 11:4974. [PMID: 36078904 PMCID: PMC9456375 DOI: 10.3390/jcm11174974] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory dermatosis with periods of exacerbation and remissions. AD is characterized by intense, persistent pruritus and heterogeneity in clinical symptomatology and severity. Therapeutic goals include the amelioration of cutaneous eruptions, diminishing relapses and eventually the disease burden. To date, topical corticosteroids (TCS) and calcineurin inhibitors (TCI) have yet been deemed the mainstay of topical treatments in AD management. Nevertheless, despite their indisputable efficiency, TCS and TCI are not indicated for continuous long-term use given their safety profile. While research in AD has concentrated predominantly on systemic therapies, more than 30 novel topical compounds are under development. The existing data appear encouraging, with some regimens that are already FDA-approved (ruxolitinib was the most recent in September 2021) and several pharmaceutical pipeline products for mild-to-moderate AD that are in an advanced stage of development, such as tapinarof, difamilast and roflumilast. Larger, long-term studies are still required to evaluate the efficacy and safety of these novel compounds in the long run and weigh their advantages over present treatments. In this review, we aim to provide an overview of the latest knowledge about AD topical treatments, echoing upcoming research trends.
Collapse
Affiliation(s)
- Nikolaos Sideris
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Eleni Paschou
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Katerina Bakirtzi
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ilias Papadimitriou
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Aikaterini Tsentemeidou
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Elena Sotiriou
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| |
Collapse
|