1
|
Bogaard HJ, de Man FS. Beta-Blockers in Pulmonary Arterial Hypertension: Physiology Getting in Biology's Way. Chest 2025; 167:935-938. [PMID: 40210311 DOI: 10.1016/j.chest.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 04/12/2025] Open
Affiliation(s)
- Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Frances S de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Abramov AA, Lakomkin VL, Prosvirnin AV, Kuzmin VS. Pulmonary Arterial Hypertension Induces Compensatory Increase of Left Ventricular Contractility Indexes in Rats in Response to Its Filling Insufficiency. Bull Exp Biol Med 2025; 178:586-592. [PMID: 40299128 DOI: 10.1007/s10517-025-06379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 04/30/2025]
Abstract
Pulmonary arterial hypertension (PAH) is accompanied by changes in the pulmonary and systemic circulation. We studied the effect of PAH on the function of the left ventricle (LV). Left ventricular pressure and volume were simultaneously recorded in vivo in rats with monocrotaline-induced PAH (60 mg/kg). LV contractility and mechanical indexes were calculated. In addition, the relationships between LV maximum rate of contraction (dP/dtmax) or relaxation (dP/dtmin) and left ventricular end-diastolic volume (EDV) were assessed. PAH leads to a significant decrease in cardiac output at a constant HR as well as to a decrease in stroke volume at unchanged LV ejection fraction. In rats with PAH, the slopes of the dP/dtmax-EDV and dP/dtmin-EDV curves were greater than in control animals by 1.93 and 2.5 times, respectively. Thus, PAH leads to a compensatory increase in the dependence of LV contractility and "intensity" of LV relaxation on EDV.
Collapse
Affiliation(s)
- A A Abramov
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - V L Lakomkin
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Prosvirnin
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Kuzmin
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Tsai J, Malik S, Tjen-A-Looi SC. Pulmonary Hypertension: Pharmacological and Non-Pharmacological Therapies. Life (Basel) 2024; 14:1265. [PMID: 39459565 PMCID: PMC11509317 DOI: 10.3390/life14101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Pulmonary hypertension (PH) is a severe and chronic disease characterized by increased pulmonary vascular resistance and remodeling, often precipitating right-sided heart dysfunction and death. Although the condition is progressive and incurable, current therapies for the disease focus on multiple different drugs and general supportive therapies to manage symptoms and prolong survival, ranging from medications more specific to pulmonary arterial hypertension (PAH) to exercise training. Moreover, there are multiple studies exploring novel experimental drugs and therapies including unique neurostimulation, to help better manage the disease. Here, we provide a narrative review focusing on current PH treatments that target multiple underlying biochemical mechanisms, including imbalances in vasoconstrictor-vasodilator and autonomic nervous system function, inflammation, and bone morphogenic protein (BMP) signaling. We also focus on the potential of novel therapies for managing PH, focusing on multiple types of neurostimulation including acupuncture. Lastly, we also touch upon the disease's different subgroups, clinical presentations and prognosis, diagnostics, demographics, and cost.
Collapse
Affiliation(s)
- Jason Tsai
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| | | | - Stephanie C. Tjen-A-Looi
- Susan Samueli Integrative Health Institute, College of Health Sciences, University of California-Irvine, Irvine, CA 92617, USA;
| |
Collapse
|
4
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
5
|
Fang X, Chen J, Hu Z, Shu L, Wang J, Dai M, Tan T, Zhang J, Bao M. Carotid Baroreceptor Stimulation Ameliorates Pulmonary Arterial Remodeling in Rats With Hypoxia-Induced Pulmonary Hypertension. J Am Heart Assoc 2024; 13:e035868. [PMID: 39344593 DOI: 10.1161/jaha.124.035868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Sympathetic hyperactivity plays an important role in the initiation and maintenance of pulmonary hypertension. Carotid baroreceptor stimulation (CBS) is an effective autonomic neuromodulation therapy. We aim to investigate the effects of CBS on hypoxia-induced pulmonary hypertension and its underlying mechanisms. METHODS AND RESULTS Rats were randomly assigned into 4 groups, including a Control-sham group (n=7), a Control-CBS group (n=7), a Hypoxia-sham group (n=10) and a Hypoxia-CBS group (n=10). Echocardiography, ECG, and hemodynamics examination were performed. Samples of blood, lung tissue, pulmonary arteries, and right ventricle were collected for the further analysis. In the in vivo study, CBS reduced wall thickness and muscularization degree in pulmonary arterioles, thereby improving pulmonary hemodynamics. Right ventricle hypertrophy, fibrosis and dysfunction were all improved. CBS rebalanced autonomic tone and reduced the density of sympathetic nerves around pulmonary artery trunks and bifurcations. RNA-seq analysis identified BDNF and periostin (POSTN) as key genes involved in hypoxia-induced pulmonary hypertension, and CBS downregulated the mRNA expression of BDNF and POSTN in rat pulmonary arteries. In the in vitro study, norepinephrine was found to promote pulmonary artery smooth muscle cell proliferation while upregulating BDNF and POSTN expression. The proliferative effect was alleviated by silence BDNF or POSTN. CONCLUSIONS Our results showed that CBS could rebalance autonomic tone, inhibit pulmonary arterial remodeling, and improve pulmonary hemodynamics and right ventricle function, thus delaying hypoxia-induced pulmonary hypertension progression. There may be a reciprocal interaction between POSTN and BDNF that is responsible for the underlying mechanism.
Collapse
Affiliation(s)
- Xuesheng Fang
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| | - Jie Chen
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
- Department of Emergency, China-Japan Friendship Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Zhiling Hu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| | - Ling Shu
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| | - Jing Wang
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Mingyan Dai
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| | - Tuantuan Tan
- Department of Ultrasonography Renmin Hospital of Wuhan University Wuhan China
| | - Junxia Zhang
- Department of Endocrinology Taikang Tongji (Wuhan) Hospital Wuhan China
| | - Mingwei Bao
- Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
- Cardiovascular Research Institute Wuhan University Wuhan China
- Hubei Key Laboratory of Cardiology Wuhan China
| |
Collapse
|
6
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Xueyuan L, Yanping X, Jiaoqiong G, Yuehui Y. Autonomic nervous modulation: early treatment for pulmonary artery hypertension. ESC Heart Fail 2024; 11:619-627. [PMID: 38108098 DOI: 10.1002/ehf2.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Pulmonary artery hypertension (PAH) is a chronic vascular disease defined by the elevation of pulmonary vascular resistance and mean pulmonary artery pressure, which arises due to pulmonary vascular remodelling. Prior research has already established a link between the autonomic nervous system (ANS) and PAH. Therefore, the rebalancing of the ANS offers a promising approach for the treatment of PAH. The process of rebalancing involves two key aspects: inhibiting an overactive sympathetic nervous system and fortifying the impaired parasympathetic nervous system through pharmacological or interventional procedures. However, the understanding of the precise mechanisms involved in neuromodulation, whether achieved through medication or intervention, remains insufficient. This limited understanding hinders our ability to determine the appropriate timing and scope of such treatment. This review aims to integrate the findings from clinical and mechanistic studies on ANS rebalancing as a treatment approach for PAH, with the ultimate goal of identifying a path to enhance the safety and efficacy of neuromodulation therapy and improve the prognosis of PAH.
Collapse
Affiliation(s)
- Liu Xueyuan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Yanping
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guan Jiaoqiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Yuehui
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Wang J, Chen J, Shu L, Zhang R, Dai M, Fang X, Hu Z, Xiao L, Xi Z, Zhang J, Bao M. Carotid Baroreceptor Stimulation Improves Pulmonary Arterial Remodeling and Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2024; 9:475-492. [PMID: 38680958 PMCID: PMC11055206 DOI: 10.1016/j.jacbts.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 05/01/2024]
Abstract
Autonomic nervous system imbalance is intricately associated with the severity and prognosis of pulmonary arterial hypertension (PAH). Carotid baroreceptor stimulation (CBS) is a nonpharmaceutical intervention for autonomic neuromodulation. The effects of CBS on monocrotaline-induced PAH were investigated in this study, and its underlying mechanisms were elucidated. The results indicated that CBS improved pulmonary hemodynamic status and alleviated right ventricular dysfunction, improving pulmonary arterial remodeling and right ventricular remodeling, thus enhancing the survival rate of monocrotaline-induced PAH rats. The beneficial effects of CBS treatment on PAH might be mediated through the inhibition of sympathetic overactivation and inflammatory immune signaling pathways.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Shu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ruoliu Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mingyan Dai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xuesheng Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhiling Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Lingling Xiao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhaoqing Xi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junxia Zhang
- Department of Endocrinology, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Mingwei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
9
|
The Effect of Renal Denervation on Cardiac Diastolic Function in Patients with Hypertension and Paroxysmal Atrial Fibrillation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2268591. [PMID: 35668773 PMCID: PMC9167068 DOI: 10.1155/2022/2268591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/05/2022]
Abstract
Objective Renal artery denervation (RDN) can treat hypertension and paroxysmal atrial fibrillation (PAF). Hypertension and PAF can affect cardiac diastolic function. The study aimed to evaluate the effect of RDN on cardiac diastolic function in patients with refractory hypertension and PAF. Methods 190 consecutive patients with hypertension and PAF were recruited. The levels of NT-proBNP and metrics of echocardiography were measured before and after RDN in patients with refractory hypertension and PAF. The 190 patients were divided into the decreasing HR and nondecreasing HR group, the decreasing MAP and nondecreasing MAP group, the HFPEF group, and the normal diastolic function group, respectively. Results Before RDN, the indices about cardiac diastolic function were out of the normal range. After RDN, the diastolic function improved in the indices of NT-proBNP, E/e′, e′. The diastolic function about the indices of NT-proBNP, E/e′, e′ was improved in the decreasing HR group, the decreasing mean arterial pressure (MAP) group, and the HFPEF group, correspondingly compared to the nondecreasing HR group, the non-decreasing MAP group, and the preoperative normal diastolic function group. In the multivariate analysis, the MAP and HR were the only two indicators significantly associated with the improvement of diastolic function. Conclusion RDN could improve the diastolic function in patients with refractory hypertension and PAF. Patients with HFPEF could receive benefits through RDN. It was speculated that RDN improved the diastolic function mainly through decreasing HR and MAP.
Collapse
|
10
|
Li L, Hu Z, Xiong Y, Yao Y. Device-Based Sympathetic Nerve Regulation for Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:803984. [PMID: 34957267 PMCID: PMC8695731 DOI: 10.3389/fcvm.2021.803984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/05/2022] Open
Abstract
Sympathetic overactivation plays an important role in promoting a variety of pathophysiological processes in cardiovascular diseases (CVDs), including ventricular remodeling, vascular endothelial injury and atherosclerotic plaque progression. Device-based sympathetic nerve (SN) regulation offers a new therapeutic option for some CVDs. Renal denervation (RDN) is the most well-documented method of device-based SN regulation in clinical studies, and several large-scale randomized controlled trials have confirmed its value in patients with resistant hypertension, and some studies have also found RDN to be effective in the control of heart failure and arrhythmias. Pulmonary artery denervation (PADN) has been clinically shown to be effective in controlling pulmonary hypertension. Hepatic artery denervation (HADN) and splenic artery denervation (SADN) are relatively novel approaches that hold promise for a role in cardiovascular metabolic and inflammatory-immune related diseases, and their first-in-man studies are ongoing. In addition, baroreflex activation, spinal cord stimulation and other device-based therapies also show favorable outcomes. This review summarizes the pathophysiological rationale and the latest clinical evidence for device-based therapies for some CVDs.
Collapse
Affiliation(s)
| | | | | | - Yan Yao
- National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Fu Wai Hospital, Beijing, China
| |
Collapse
|
11
|
Pulmonary and Systemic Hemodynamics following Multielectrode Radiofrequency Catheter Renal Denervation in Acutely Induced Pulmonary Arterial Hypertension in Swine. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4248111. [PMID: 34765677 PMCID: PMC8577935 DOI: 10.1155/2021/4248111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Objective We aimed to assess the effects of renal denervation (RDN) on systemic and pulmonary hemodynamics in a swine model of thromboxane A2- (TXA2-) induced pulmonary arterial hypertension (PAH). Methods The study protocol comprised two PAH inductions with a target mean pulmonary artery pressure (PAP) of 40 mmHg at baseline and following either the RDN or sham procedure. Ten Landrace pigs underwent the first PAH induction; then, nine animals were randomly allocated in 1 : 1 ratio to RDN or sham procedure; the second PAH induction was performed in eight animals (one animal died of pulmonary embolism during the first PAH induction, and one animal died after RDN). In the RDN group, ablation was performed in all available renal arteries, and balloon inflation within artery branches was performed in controls. An autopsy study of the renal arteries was performed. Results At baseline, the target mean PAP was achieved in all animals with 25.0 [20.1; 25.2] mcg of TXA2. The second PAH induction required the same mean TXA2 dose and infusion time. There was no statistically significant difference in the mean PAP at second PAH induction between the groups (39.0 ± 5.3 vs. 39.75 ± 0.5 mmHg, P > 0.05). In the RDN group, the second PAH induction resulted in a numerical but insignificant trend toward a decrease in the mean systemic blood pressure and systemic vascular resistance, when compared with the baseline induction (74 ± 18.7 vs. 90.25 ± 28.1 mmHg and 1995.3 ± 494.3 vs. 2433.7 ± 1176.7 dyn∗sec∗cm−5, P > 0.05, respectively). No difference in hemodynamic parameters was noted in the sham group between the first and second PAH induction. Autopsy demonstrated artery damage in both groups, but RDN resulted in more severe lesions. Conclusions According to our results, RDN does not result in significant acute pulmonary or systemic hemodynamic changes in the TXA2-induced PAH model. The potential chronic effects of RDN on PAH require further research.
Collapse
|
12
|
Kwan ED, Vélez-Rendón D, Zhang X, Mu H, Patel M, Pursell E, Stowe J, Valdez-Jasso D. Distinct time courses and mechanics of right ventricular hypertrophy and diastolic stiffening in a male rat model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2021; 321:H702-H715. [PMID: 34448637 PMCID: PMC8794227 DOI: 10.1152/ajpheart.00046.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
Although pulmonary arterial hypertension (PAH) leads to right ventricle (RV) hypertrophy and structural remodeling, the relative contributions of changes in myocardial geometric and mechanical properties to systolic and diastolic chamber dysfunction and their time courses remain unknown. Using measurements of RV hemodynamic and morphological changes over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we discriminated the contributions of RV geometric remodeling and alterations of myocardial material properties to changes in systolic and diastolic chamber function. Significant and rapid RV hypertrophic wall thickening was sufficient to stabilize ejection fraction in response to increased pulmonary arterial pressure by week 4 without significant changes in systolic myofilament activation. After week 4, RV end-diastolic pressure increased significantly with no corresponding changes in end-diastolic volume. Significant RV diastolic chamber stiffening by week 5 was not explained by RV hypertrophy. Instead, model analysis showed that the increases in RV end-diastolic chamber stiffness were entirely attributable to increased resting myocardial material stiffness that was not associated with significant myocardial fibrosis or changes in myocardial collagen content or type. These findings suggest that whereas systolic volume in this model of RV pressure overload is stabilized by early RV hypertrophy, diastolic dilation is prevented by subsequent resting myocardial stiffening.NEW & NOTEWORTHY Using a novel combination of hemodynamic and morphological measurements over 10 wk in a male rat model of PAH and a mathematical model of RV mechanics, we found that compensated systolic function was almost entirely explained by RV hypertrophy, but subsequently altered RV end-diastolic mechanics were primarily explained by passive myocardial stiffening that was not associated with significant collagen extracellular matrix accumulation.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Diastole
- Disease Models, Animal
- Fibrosis
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Models, Cardiovascular
- Myocardium/pathology
- Pulmonary Arterial Hypertension/complications
- Pulmonary Arterial Hypertension/physiopathology
- Rats, Sprague-Dawley
- Systole
- Time Factors
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
- Ethan D Kwan
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Daniela Vélez-Rendón
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoyan Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Hao Mu
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Megh Patel
- College of Medicine, Texas A&M University, College Station, Texas
| | - Erica Pursell
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Jennifer Stowe
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California San Diego, La Jolla, California
| |
Collapse
|
13
|
Kurakula K, Hagdorn QAJ, van der Feen DE, Vonk Noordegraaf A, Ten Dijke P, de Boer RA, Bogaard HJ, Goumans MJ, Berger RMF. Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular remodelling in pulmonary hypertension by inhibiting TGF-β signalling. Angiogenesis 2021; 25:99-112. [PMID: 34379232 PMCID: PMC8813847 DOI: 10.1007/s10456-021-09812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease, characterized by obstructive pulmonary vascular remodelling ultimately leading to right ventricular (RV) failure and death. Disturbed transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signalling, endothelial cell dysfunction, increased proliferation of smooth muscle cells and fibroblasts, and inflammation contribute to this abnormal remodelling. Peptidyl-prolyl isomerase Pin1 has been identified as a critical driver of proliferation and inflammation in vascular cells, but its role in the disturbed TGF-β/BMP signalling, endothelial cell dysfunction, and vascular remodelling in PAH is unknown. Here, we report that Pin1 expression is increased in cultured pulmonary microvascular endothelial cells (MVECs) and lung tissue of PAH patients. Pin1 inhibitor, juglone significantly decreased TGF-β signalling, increased BMP signalling, normalized their hyper-proliferative, and inflammatory phenotype. Juglone treatment reversed vascular remodelling through reducing TGF-β signalling in monocrotaline + shunt-PAH rat model. Juglone treatment decreased Fulton index, but did not affect or harm cardiac function and remodelling in rats with RV pressure load induced by pulmonary artery banding. Our study demonstrates that inhibition of Pin1 reversed the PAH phenotype in PAH MVECs in vitro and in PAH rats in vivo, potentially through modulation of TGF-β/BMP signalling pathways. Selective inhibition of Pin1 could be a novel therapeutic option for the treatment of PAH.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| | - Quint A J Hagdorn
- Department of Paediatric Cardiology, Beatrix Children's Hospital, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diederik E van der Feen
- Department of Paediatric Cardiology, Beatrix Children's Hospital, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| | - Rolf M F Berger
- Department of Paediatric Cardiology, Beatrix Children's Hospital, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Vang A, da Silva Gonçalves Bos D, Fernandez-Nicolas A, Zhang P, Morrison AR, Mancini TJ, Clements RT, Polina I, Cypress MW, Jhun BS, Hawrot E, Mende U, O-Uchi J, Choudhary G. α7 Nicotinic acetylcholine receptor mediates right ventricular fibrosis and diastolic dysfunction in pulmonary hypertension. JCI Insight 2021; 6:142945. [PMID: 33974567 PMCID: PMC8262476 DOI: 10.1172/jci.insight.142945] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Right ventricular (RV) fibrosis is a key feature of maladaptive RV hypertrophy and dysfunction and is associated with poor outcomes in pulmonary hypertension (PH). However, mechanisms and therapeutic strategies to mitigate RV fibrosis remain unrealized. Previously, we identified that cardiac fibroblast α7 nicotinic acetylcholine receptor (α7 nAChR) drives smoking-induced RV fibrosis. Here, we sought to define the role of α7 nAChR in RV dysfunction and fibrosis in the settings of RV pressure overload as seen in PH. We show that RV tissue from PH patients has increased collagen content and ACh expression. Using an experimental rat model of PH, we demonstrate that RV fibrosis and dysfunction are associated with increases in ACh and α7 nAChR expression in the RV but not in the left ventricle (LV). In vitro studies show that α7 nAChR activation leads to an increase in adult ventricular fibroblast proliferation and collagen content mediated by a Ca2+/epidermal growth factor receptor (EGFR) signaling mechanism. Pharmacological antagonism of nAChR decreases RV collagen content and improves RV function in the PH model. Furthermore, mice lacking α7 nAChR exhibit improved RV diastolic function and have lower RV collagen content in response to persistently increased RV afterload, compared with WT controls. These finding indicate that enhanced α7 nAChR signaling is an important mechanism underlying RV fibrosis and dysfunction, and targeted inhibition of α7 nAChR is a potentially novel therapeutic strategy in the setting of increased RV afterload.
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Denielli da Silva Gonçalves Bos
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ana Fernandez-Nicolas
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peng Zhang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Thomas J. Mancini
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Richard T. Clements
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Iuliia Polina
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael W. Cypress
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bong Sook Jhun
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ulrike Mende
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Jin O-Uchi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
15
|
Spyropoulos F, Michael Z, Finander B, Vitali S, Kosmas K, Zymaris P, Kalish BT, Kourembanas S, Christou H. Acetazolamide Improves Right Ventricular Function and Metabolic Gene Dysregulation in Experimental Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:662870. [PMID: 34222363 PMCID: PMC8247952 DOI: 10.3389/fcvm.2021.662870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Right ventricular (RV) performance is a key determinant of mortality in pulmonary arterial hypertension (PAH). RV failure is characterized by metabolic dysregulation with unbalanced anaerobic glycolysis, oxidative phosphorylation, and fatty acid oxidation (FAO). We previously found that acetazolamide (ACTZ) treatment modulates the pulmonary inflammatory response and ameliorates experimental PAH. Objective: To evaluate the effect of ACTZ treatment on RV function and metabolic profile in experimental PAH. Design/Methods: In the Sugen 5416/hypoxia (SuHx) rat model of severe PAH, RV transcriptomic analysis was performed by RNA-seq, and top metabolic targets were validated by RT-PCR. We assessed the effect of therapeutic administration of ACTZ in the drinking water on hemodynamics by catheterization [right and left ventricular systolic pressure (RVSP and LVSP, respectively)] and echocardiography [pulmonary artery acceleration time (PAAT), RV wall thickness in diastole (RVWT), RV end-diastolic diameter (RVEDD), tricuspid annular plane systolic excursion (TAPSE)] and on RV hypertrophy (RVH) by Fulton's index (FI) and RV-to-body weight (BW) ratio (RV/BW). We also examined myocardial histopathology and expression of metabolic markers in RV tissues. Results: There was a distinct transcriptomic signature of RVH in the SuHx model of PAH, with significant downregulation of metabolic enzymes involved in fatty acid transport, beta oxidation, and glucose oxidation compared to controls. Treatment with ACTZ led to a pattern of gene expression suggestive of restored metabolic balance in the RV with significantly increased beta oxidation transcripts. In addition, the FAO transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α) was significantly downregulated in untreated SuHx rats compared to controls, and ACTZ treatment restored its expression levels. These metabolic changes were associated with amelioration of the hemodynamic and echocardiographic markers of RVH in the ACTZ-treated SuHx animals and attenuation of cardiomyocyte hypertrophy and RV fibrosis. Conclusion: Acetazolamide treatment prevents the development of PAH, RVH, and fibrosis in the SuHx rat model of severe PAH, improves RV function, and restores the RV metabolic profile.
Collapse
Affiliation(s)
- Fotios Spyropoulos
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Zoe Michael
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Benjamin Finander
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Sally Vitali
- Harvard Medical School, Boston, MA, United States.,Department of Anesthesia and Critical Care Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Kosmas Kosmas
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Panagiotis Zymaris
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Brian T Kalish
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Peters EL, Bogaard HJ, Vonk Noordegraaf A, de Man FS. Neurohormonal modulation in pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.04633-2020. [PMID: 33766951 PMCID: PMC8551560 DOI: 10.1183/13993003.04633-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right heart failure. Pulmonary hypertension appears in various forms; one of those is pulmonary arterial hypertension (PAH) and is particularly characterised by progressive remodelling and obstruction of the smaller pulmonary vessels. Neurohormonal imbalance in PAH patients is associated with worse prognosis and survival. In this back-to-basics article on neurohormonal modulation in PAH, we provide an overview of the pharmacological and nonpharmacological strategies that have been tested pre-clinically and clinically. The benefit of neurohormonal modulation strategies in PAH patients has been limited by lack of insight into how the neurohormonal system is changed throughout the disease and difficulties in translation from animal models to human trials. We propose that longitudinal and individual assessments of neurohormonal status are required to improve the timing and specificity of neurohormonal modulation strategies. Ongoing developments in imaging techniques such as positron emission tomography may become helpful to determine neurohormonal status in PAH patients in different disease stages and optimise individual treatment responses.
Collapse
Affiliation(s)
- Eva L Peters
- Dept of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands.,Dept of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
17
|
Yamasaki Y, Abe K, Kamitani T, Sagiyama K, Hida T, Hosokawa K, Matsuura Y, Hioki K, Nagao M, Yabuuchi H, Ishigami K. Right Ventricular Extracellular Volume with Dual-Layer Spectral Detector CT: Value in Chronic Thromboembolic Pulmonary Hypertension. Radiology 2021; 298:589-596. [PMID: 33497315 DOI: 10.1148/radiol.2020203719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Right ventricular (RV) extracellular volumes (ECVs), as a surrogate for histologic fibrosis, have not been sufficiently investigated. Purpose To evaluate and compare RV and left ventricular (LV) ECVs obtained with dual-layer spectral detector CT (DLCT) in chronic thromboembolic pulmonary hypertension (CTEPH) and investigate the clinical importance of RV ECV. Materials and Methods Retrospective analysis was performed on data from 31 patients with CTEPH (17 were not treated with pulmonary endarterectomy [PEA] or balloon pulmonary angioplasty [BPA] and 14 were) and eight control subjects who underwent myocardial delayed enhancement (MDE) DLCT from January 2019 to June 2020. The ECVs in the RV and LV walls were calculated by using iodine density as derived from spectral data pertaining to MDE. Statistical analyses were performed with one-way repeated analysis of variance with the Tukey post hoc test or the Kruskal-Wallis test with the Steel-Dwass test and linear regression analysis. Results The PEA- and BPA-naive group showed significantly higher ECVs than the PEA- or BPA-treated group and control group in the septum (28.2% ± 2.9 vs 24.3% ± 3.6, P = .005), anterior right ventricular insertion point (RVIP) (32.9% ± 4.6 vs 25.3% ± 3.6, P < .001), posterior RVIP (35.2% ± 5.2 vs 27.3% ± 4.2, P < .001), mean RVIP (34.0% ± 4.2 vs 26.3% ± 3.4, P < .001), RV free wall (29.5% ± 3.3 vs 25.9% ± 4.1, P = .036), and mean RV wall (29.1% ± 3.0 vs 26.1% ± 3.1, P = .029). There were no significant differences between the PEA- or BPA-treated group and control subjects in these segments (septum, P = .93; anterior RVIP, P = .38; posterior RVIP, P = .52; mean RVIP, P = .36; RV free wall, P = .97; and mean RV, P = .33). There were significant correlations between ECV and mean pulmonary artery pressure (PAP) or brain natriuretic peptide (BNP) in the mean RVIP (mean PAP: R = 0.66, P < .001; BNP: R = 0.44, P = .014) and the mean RV (mean PAP: R = 0.49, P = .005; BNP: R = 0.44, P = .013). Conclusion Right ventricular and right ventricular insertion point extracellular volumes could be noninvasive surrogate markers of disease severity and reverse tissue remodeling in chronic thromboembolic pulmonary hypertension. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Sandfort and Bluemke in this issue.
Collapse
Affiliation(s)
- Yuzo Yamasaki
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Kohtaro Abe
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Takeshi Kamitani
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Koji Sagiyama
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Tomoyuki Hida
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Kazuya Hosokawa
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Yuko Matsuura
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Kazuhito Hioki
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Michinobu Nagao
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Hidetake Yabuuchi
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| | - Kousei Ishigami
- From the Departments of Clinical Radiology (Y.Y., T.K., K.S., T.H., Y.M., K.I.), Cardiovascular Medicine (K.A., K. Hosokawa), and Health Sciences (H.Y.), Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan (K. Hioki); and Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan (M.N.)
| |
Collapse
|
18
|
Kearney K, Kotlyar E, Lau EMT. Pulmonary Vascular Disease as a Systemic and Multisystem Disease. Clin Chest Med 2021; 42:167-177. [PMID: 33541610 DOI: 10.1016/j.ccm.2020.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a disease of progressive pulmonary vascular remodeling due to abnormal proliferation of pulmonary vascular endothelial and smooth muscle cells and endothelial dysfunction. PAH is a multisystem disease with systemic manifestations and complications. This article covers the chronic heart failure syndrome, including the systemic consequences of right ventricle-pulmonary artery uncoupling and neurohormonal activation, skeletal and respiratory muscle effects, systemic endothelial dysfunction and coronary artery disease, systemic inflammation and infection, endocrine and metabolic changes, the liver and gut axis, sleep, neurologic complications, and skin and iron metabolic changes.
Collapse
Affiliation(s)
- Katherine Kearney
- Cardiology Department, St Vincent's Hospital, 394 Victoria Street, Darlinghurst, New South Wales 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Eugene Kotlyar
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Heart Transplant Unit, St Vincent's Hospital, 394 Victoria Street, Darlinghurst, New South Wales 2010, Australia
| | - Edmund M T Lau
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Missenden Road, Camperdown, New South Wales 2050, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia.
| |
Collapse
|
19
|
Neurohormonal Modulation as a Therapeutic Target in Pulmonary Hypertension. Cells 2020; 9:cells9112521. [PMID: 33266371 PMCID: PMC7700466 DOI: 10.3390/cells9112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomic nervous system (ANS) and renin-angiotensin-aldosterone system (RAAS) are involved in many cardiovascular disorders, including pulmonary hypertension (PH). The current review focuses on the role of the ANS and RAAS activation in PH and updated evidence of potential therapies targeting both systems in this condition, particularly in Groups 1 and 2. State of the art knowledge in preclinical and clinical use of pharmacologic drugs (beta-blockers, beta-three adrenoceptor agonists, or renin-angiotensin-aldosterone signaling drugs) and invasive procedures, such as pulmonary artery denervation, is provided.
Collapse
|
20
|
Extended Renal Artery Denervation Is Associated with Artery Wall Lesions and Acute Systemic and Pulmonary Hemodynamic Changes: A Sham-Controlled Experimental Study. Cardiovasc Ther 2020; 2020:8859663. [PMID: 33193811 PMCID: PMC7644331 DOI: 10.1155/2020/8859663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022] Open
Abstract
Objectives We sought to assess acute changes in systemic and pulmonary hemodynamics and microscopic artery lesions following extended renal artery denervation (RDN). Background RDN has been proposed to reduce sympathetic nervous system hyperactivation. Although the effects of RDN on systemic circulation and overall sympathetic activity have been studied, data on the impact of RDN on pulmonary hemodynamics is lacking. Methods The study comprised 13 normotensive Landrace pigs. After randomization, 7 animals were allocated to the group of bilateral RDN and 6 animals to the group of a sham procedure (SHAM). Hemodynamic measures, cannulation, and balloon-based occlusion of the renal arteries were performed in both groups. In the RDN group, radiofrequency ablation was performed in all available arteries and their segments. An autopsy study of the renal arteries was carried out in both groups. Results The analysis was performed on 12 pigs (6 in either group) since pulmonary thromboembolism occurred in one case. A statistically significant drop in the mean diastolic pulmonary artery pressure (PAP) was detected in the RDN group when compared with the SHAM group (change by 13.0 ± 4.4 and 10.0 ± 3.0 mmHg, correspondingly; P = 0.04). In 5 out of 6 pigs in the RDN group, a significant decrease in systemic systolic blood pressure was found, when compared with baseline (98.8 ± 17.8 vs. 90.2 ± 12.6 mmHg, P = 0.04), and a lower mean pulmonary vascular resistance (PVR) (291.0 ± 77.4 vs. 228.5 ± 63.8 dyn∗sec∗cm−5, P = 0.03) after ablation was found. Artery dissections were found in both groups, with prevalence in animals after RDN. Conclusions Extensive RDN leads to a rapid and significant decrease in PAP. In the majority of cases, RDN is associated with an acute lowering of systolic blood pressure and PVR. Extended RDN is associated with artery wall lesions and thrombus formation underdiagnosed by angiography.
Collapse
|
21
|
Lahm T, Hess E, Barón AE, Maddox TM, Plomondon ME, Choudhary G, Maron BA, Zamanian RT, Leary PJ. Renin-Angiotensin-Aldosterone System Inhibitor Use and Mortality in Pulmonary Hypertension: Insights From the Veterans Affairs Clinical Assessment Reporting and Tracking Database. Chest 2020; 159:1586-1597. [PMID: 33031831 DOI: 10.1016/j.chest.2020.09.258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The renin-angiotensin-aldosterone system (RAAS) contributes to pulmonary hypertension (PH) pathogenesis. Although animal data suggest that RAAS inhibition attenuates PH, it is unknown if RAAS inhibition is beneficial in PH patients. RESEARCH QUESTION Is RAAS inhibitor use associated with lower mortality in a large cohort of patients with hemodynamically confirmed PH? STUDY DESIGN AND METHODS We used the Department of Veterans Affairs Clinical Assessment Reporting and Tracking Database to study retrospectively relationships between RAAS inhibitors (angiotensin converting enzyme inhibitors [ACEIs], angiotensin receptor blockers [ARBs], and aldosterone antagonists [AAs]) and mortality in 24,221 patients with hemodynamically confirmed PH. We evaluated relationships in the full and in propensity-matched cohorts. Analyses were adjusted for demographics, socioeconomic status, comorbidities, disease severity, and comedication use in staged models. RESULTS ACEI and ARB use was associated with improved survival in unadjusted Kaplan-Meier survival analyses in the full cohort and the propensity-matched cohort. This relationship was insensitive to adjustment, independent of pulmonary artery wedge pressure, and also was observed in a cohort restricted to individuals with precapillary PH. AA use was associated with worse survival in unadjusted Kaplan-Meier survival analyses in the full cohort; however, AA use was associated less robustly with mortality in the propensity-matched cohort and was not associated with worse survival after adjustment for disease severity, indicating that AAs in real-world practice are used preferentially in sicker patients and that the unadjusted association with increased mortality may be an artifice of confounding by indication of severity. INTERPRETATION ACEI and ARB use is associated with lower mortality in veterans with PH. AA use is a marker of disease severity in PH. ACEIs and ARBs may represent a novel treatment strategy for diverse PH phenotypes.
Collapse
Affiliation(s)
- Tim Lahm
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN; Indiana University School of Medicine, Indianapolis, IN.
| | - Edward Hess
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| | - Anna E Barón
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO; Colorado School of Public Health, Denver, CO
| | - Thomas M Maddox
- Washington University School of Medicine Division of Cardiology and Healthcare Innovation Lab, St. Louis, MO
| | - Mary E Plomondon
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| | - Gaurav Choudhary
- Providence Veterans Affairs Medical Center, Providence, RI; Alpert Medical School of Brown University, Providence, RI
| | - Bradley A Maron
- Veterans Affairs Boston Healthcare System, Boston, MA; Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Roham T Zamanian
- Stanford University Division of Pulmonary, Allergy, and Critical Care Medicine and Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA
| | | |
Collapse
|
22
|
Abstract
The role of right ventricular (RV) fibrosis in pulmonary hypertension (PH) remains a subject of ongoing discussion. Alterations of the collagen network of the extracellular matrix may help prevent ventricular dilatation in the pressure-overloaded RV. At the same time, fibrosis impairs cardiac function, and a growing body of experimental data suggests that fibrosis plays a crucial role in the development of RV failure. In idiopathic pulmonary arterial hypertension and chronic thromboembolic PH, the RV is exposed to a ≈5 times increased afterload, which makes these conditions excellent models for studying the impact of pressure overload on RV structure. With this review, we present clinical evidence of RV fibrosis in idiopathic pulmonary arterial hypertension and chronic thromboembolic PH, explore the correlation between fibrosis and RV function, and discuss the clinical relevance of RV fibrosis in patients with PH. We postulate that RV fibrosis has a dual role in patients with pressure-overloaded RVs of idiopathic pulmonary arterial hypertension and chronic thromboembolic PH: as part of an adaptive response to prevent cardiomyocyte overstretch and to maintain RV shape for optimal function, and as part of a maladaptive response that increases diastolic stiffness, perturbs cardiomyocyte excitation-contraction coupling, and disrupts the coordination of myocardial contraction. Finally, we discuss potential novel therapeutic strategies and describe more sensitive techniques to quantify RV fibrosis, which may be used to clarify the causal relation between RV fibrosis and RV function in future research.
Collapse
Affiliation(s)
| | | | | | - Frances S de Man
- Amsterdam UMC, Vrije Universiteit, The Netherlands (A.V.N., F.S.d.M)
| |
Collapse
|
23
|
Iturriaga R, Castillo-Galán S. Potential Contribution of Carotid Body-Induced Sympathetic and Renin-Angiotensin System Overflow to Pulmonary Hypertension in Intermittent Hypoxia. Curr Hypertens Rep 2019; 21:89. [PMID: 31599367 DOI: 10.1007/s11906-019-0995-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA), featured by chronic intermittent hypoxia (CIH), is an independent risk for systemic hypertension (HTN) and is associated with pulmonary hypertension (PH). The precise mechanisms underlying pulmonary vascular remodeling and PH in OSA are not fully understood. However, it has been suggested that lung tissue hypoxia, oxidative stress, and pro-inflammatory mediators following CIH exposure may contribute to PH. RECENT FINDINGS New evidences obtained in preclinical OSA models support that an enhanced carotid body (CB) chemosensory reactiveness to oxygen elicits sympathetic and renin-angiotensin system (RAS) overflow, which contributes to HTN. Moreover, the ablation of the CBs abolished the sympathetic hyperactivity and HTN in rodents exposed to CIH. Accordingly, it is plausible that the enhanced CB chemosensory reactivity may contribute to the pulmonary vascular remodeling and PH through the overactivation of the sympathetic-RAS axis. This hypothesis is supported by the facts that (i) CB stimulation increases pulmonary arterial pressure, (ii) denervation of sympathetic fibers in pulmonary arteries reduces pulmonary remodeling and pulmonary arterial hypertension (PAH) in humans, and (iii) administration of angiotensin-converting enzyme (ACE) or blockers of Ang II type 1 receptor (ATR1) ameliorates pulmonary remodeling and PH in animal models. In this review, we will discuss the supporting evidence for a plausible contribution of the CB-induced sympathetic-RAS axis overflow on pulmonary vascular remodeling and PH induced by CIH, the main characteristic of OSA.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Sebastian Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
24
|
Brittain EL, Thennapan T, Maron BA, Chan SY, Austin ED, Spiekerkoetter E, Bogaard HJ, Guignabert C, Paulin R, Machado RF, Yu PB. Update in Pulmonary Vascular Disease 2016 and 2017. Am J Respir Crit Care Med 2019. [PMID: 29533671 DOI: 10.1164/rccm.201801-0062up] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Evan L Brittain
- 1 Division of Cardiovascular Medicine, Department of Medicine.,2 Vanderbilt Translational and Clinical Cardiovascular Research Center.,3 Pulmonary Vascular Center, Department of Medicine, and
| | | | - Bradley A Maron
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,6 Department of Cardiology, Boston VA Healthcare System, Boston, Massachusetts
| | - Stephen Y Chan
- 7 Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric D Austin
- 3 Pulmonary Vascular Center, Department of Medicine, and.,8 Pediatric Pulmonary Hypertension Program, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edda Spiekerkoetter
- 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,10 Vera Moulton Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, California
| | - Harm J Bogaard
- 11 Pulmonary Hypertension Expert Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Christophe Guignabert
- 12 INSERM UMR-S 999, Le Plessis-Robinson, France.,13 Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Roxane Paulin
- 14 Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada; and
| | - Roberto F Machado
- 15 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Paul B Yu
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Huang Y, Liu YW, Pan HZ, Zhang XL, Li J, Xiang L, Meng J, Wang PH, Yang J, Jing ZC, Zhang H. Transthoracic Pulmonary Artery Denervation for Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:704-718. [DOI: 10.1161/atvbaha.118.311992] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective—
Pulmonary arterial hypertension is characterized by progressive pulmonary vascular remodeling and persistently elevated mean pulmonary artery pressures and pulmonary vascular resistance. We aimed to investigate whether transthoracic pulmonary artery denervation (TPADN) attenuated pulmonary artery (PA) remodeling, improved right ventricular (RV) function, and affected underlying mechanisms. We also explored the distributions of sympathetic nerves (SNs) around human PAs for clinical translation.
Approach and Results—
We identified numerous SNs in adipose and connective tissues around the main PA trunks and bifurcations in male Sprague Dawley rats, which were verified in samples from human heart transplant patients. Pulmonary arterial hypertensive rats were randomized into TPADN and sham groups. In the TPADN group, SNs around the PA trunk and bifurcation were completely and accurately removed under direct visualization. The sham group underwent thoracotomy. Hemodynamics, RV function, and pathological changes in PA and RV tissues were measured via right heart catheterization, cardiac magnetic resonance imaging, and pathological staining, respectively. Compared with the sham group, the TPADN group had lower mean pulmonary arterial pressures, less PA and RV remodeling, and improved RV function. Furthermore, TPADN inhibited neurohormonal overactivation of the sympathetic nervous system and renin-angiotensin-aldosterone system and regulated abnormal expressions and signaling of neurohormone receptors in local tissues.
Conclusions—
There are numerous SNs around the rat and human main PA trunks and bifurcations. TPADN completely and accurately removed the main SNs around PAs and attenuated pulmonary arterial hypertensive progression by inhibiting excessive activation of the sympathetic nervous system and renin-angiotensin-aldosterone system neurohormone-receptor axes.
Collapse
Affiliation(s)
- Yuan Huang
- From the State Key Laboratory of Cardiovascular Diseases and Center for Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (Y.H., Y.-W.L., X.-L.Z., J.L., L.X., J.M., P.-H.W., H.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yi-Wei Liu
- From the State Key Laboratory of Cardiovascular Diseases and Center for Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (Y.H., Y.-W.L., X.-L.Z., J.L., L.X., J.M., P.-H.W., H.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Hai-Zhou Pan
- Children’s Heart Center, the Second Affiliated Hospital and Yuying Children’s Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Zhejiang, China (H.-Z.P.)
| | - Xiao-Ling Zhang
- From the State Key Laboratory of Cardiovascular Diseases and Center for Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (Y.H., Y.-W.L., X.-L.Z., J.L., L.X., J.M., P.-H.W., H.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Jun Li
- From the State Key Laboratory of Cardiovascular Diseases and Center for Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (Y.H., Y.-W.L., X.-L.Z., J.L., L.X., J.M., P.-H.W., H.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Li Xiang
- From the State Key Laboratory of Cardiovascular Diseases and Center for Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (Y.H., Y.-W.L., X.-L.Z., J.L., L.X., J.M., P.-H.W., H.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Jian Meng
- From the State Key Laboratory of Cardiovascular Diseases and Center for Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (Y.H., Y.-W.L., X.-L.Z., J.L., L.X., J.M., P.-H.W., H.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Pei-He Wang
- From the State Key Laboratory of Cardiovascular Diseases and Center for Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (Y.H., Y.-W.L., X.-L.Z., J.L., L.X., J.M., P.-H.W., H.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Jun Yang
- Institute of Basic Medical Sciences (J.Y.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Zhi-Cheng Jing
- Key Laboratory of Pulmonary Vascular Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases (Z.-C.J.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Hao Zhang
- From the State Key Laboratory of Cardiovascular Diseases and Center for Pediatric Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (Y.H., Y.-W.L., X.-L.Z., J.L., L.X., J.M., P.-H.W., H.Z.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
- Heart Center and Shanghai Institution of Pediatric Congenital Heart Diseases, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, China (H.Z.)
| |
Collapse
|
26
|
Abstract
Pulmonary arterial hypertension (PAH) is a pulmonary vasculopathy that causes right ventricular dysfunction and exercise limitation and progresses to death. New findings from translational studies have suggested alternative pathways for treatment. These avenues include sex hormones, genetic abnormalities and DNA damage, elastase inhibition, metabolic dysfunction, cellular therapies, and anti-inflammatory approaches. Both novel and repurposed compounds with rationale from preclinical experimental models and human cells are now in clinical trials in patients with PAH. Findings from these studies will elucidate the pathobiology of PAH and may result in clinically important improvements in outcome.
Collapse
Affiliation(s)
- Edda Spiekerkoetter
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| | - Steven M Kawut
- Department of Medicine and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6021, USA;
| | - Vinicio A de Jesus Perez
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA; ,
| |
Collapse
|
27
|
Viswanathan G, Mamazhakypov A, Schermuly RT, Rajagopal S. The Role of G Protein-Coupled Receptors in the Right Ventricle in Pulmonary Hypertension. Front Cardiovasc Med 2018; 5:179. [PMID: 30619886 PMCID: PMC6305072 DOI: 10.3389/fcvm.2018.00179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pressure overload of the right ventricle (RV) in pulmonary arterial hypertension (PAH) leads to RV remodeling and failure, an important determinant of outcome in patients with PAH. Several G protein-coupled receptors (GPCRs) are differentially regulated in the RV myocardium, contributing to the pathogenesis of RV adverse remodeling and dysfunction. Many pharmacological agents that target GPCRs have been demonstrated to result in beneficial effects on left ventricular (LV) failure, such as beta-adrenergic receptor and angiotensin receptor antagonists. However, the role of such drugs on RV remodeling and performance is not known at this time. Moreover, many of these same receptors are also expressed in the pulmonary vasculature, which could result in complex effects in PAH. This manuscript reviews the role of GPCRs in the RV remodeling and dysfunction and discusses activating and blocking GPCR signaling to potentially attenuate remodeling while promoting improvements of RV function in PAH.
Collapse
Affiliation(s)
- Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
28
|
Yoshida K, Saku K, Kamada K, Abe K, Tanaka-Ishikawa M, Tohyama T, Nishikawa T, Kishi T, Sunagawa K, Tsutsui H. Electrical Vagal Nerve Stimulation Ameliorates Pulmonary Vascular Remodeling and Improves Survival in Rats With Severe Pulmonary Arterial Hypertension. ACTA ACUST UNITED AC 2018; 3:657-671. [PMID: 30456337 PMCID: PMC6234524 DOI: 10.1016/j.jacbts.2018.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 11/29/2022]
Abstract
Autonomic imbalance has been documented in patients with PAH. Electrical VNS is known to restore autonomic balance and improve heart failure. This study aimed to elucidate the therapeutic effects of VNS on severe PAH in a rat model. VNS significantly restored autonomic balance, decreased mean pulmonary arterial pressure, attenuated pulmonary vascular remodeling, and preserved right ventricular function. In addition, VNS markedly improved the survival of rats with PAH. Our findings may contribute greatly to the development of device therapy for PAH and widen the clinical applicability of VNS.
This study aimed to elucidate the therapeutic effects of electrical vagal nerve stimulation (VNS) on severe pulmonary arterial hypertension in a rat model. In a pathophysiological study, VNS significantly restored autonomic balance, decreased mean pulmonary arterial pressure, attenuated pulmonary vascular remodeling, and preserved right ventricular function. In a survival study, VNS significantly improved the survival rate in both the prevention (VNS from 0 to 5 weeks after a SU5416 injection) and treatment (VNS from 5 to 10 weeks) protocols. Thus, VNS may serve as a novel therapeutic strategy for pulmonary arterial hypertension.
Collapse
Key Words
- BNP, brain natriuretic peptide
- HF, high-frequency
- HRV, heart rate variability
- IL, interleukin
- MCP, monocyte chemotactic protein
- NE, norepinephrine
- NO, nitric oxide
- PA, pulmonary artery
- PAH, pulmonary arterial hypertension
- PAP, pulmonary arterial pressure
- PVR, pulmonary vascular resistance
- RV, right ventricular
- RVEDP, right ventricular end-diastolic pressure
- SS, sham-stimulated
- VNS, vagal nerve stimulation
- autonomic imbalance
- eNOS, endothelial nitric oxide synthase
- mRNA, messenger ribonucleic acid
- pulmonary arterial hypertension
- pulmonary vascular remodeling
- vagal nerve stimulation
Collapse
Affiliation(s)
- Keimei Yoshida
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
- Address for correspondence: Dr. Keita Saku, Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kazuhiro Kamada
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mariko Tanaka-Ishikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
29
|
Padmanabhan D, Isath A, Gersh B. Renal Denervation: Paradise Lost? Paradise Regained? US CARDIOLOGY REVIEW 2018. [DOI: 10.15420/usc.2018.1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Renal denervation is a relatively recent concept whose initial promising results suffered a setback following the SYMPLICITY 3 trial, which did not show a significant blood pressure-lowering effect in comparison to sham. In this review article, we begin with the history including the physiological basis behind the concept of renal denervation. Furthermore, we review the literature in support of renal denervation, including the recently published SPYRAL HTN-OFF MED, which demonstrated significant blood pressure reduction in the absence of antihypertensive medication. We further touch upon the potential pitfalls and possible future directions of renal denervation.
Collapse
|
30
|
Neto-Neves EM, Frump AL, Vayl A, Kline JA, Lahm T. Isolated heart model demonstrates evidence of contractile and diastolic dysfunction in right ventricles from rats with sugen/hypoxia-induced pulmonary hypertension. Physiol Rep 2017; 5:5/19/e13438. [PMID: 29038355 PMCID: PMC5641930 DOI: 10.14814/phy2.13438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 01/29/2023] Open
Abstract
Although extensively used for the study of left ventricular function, limited experience exists with the isolated heart model in the evaluation of right ventricular (RV) function. In particular, no published experience exists with this tool in sugen/hypoxia‐induced pulmonary hypertension (SuHx‐PH), a frequently used model of severe and progressive PH. We sought to characterize markers of RV contractile and diastolic function in SuHx‐PH and to establish their relationship with markers of maladaptive RV remodeling. Hearts were excised from anesthetized Sprague Dawley rats with or without SuHx‐PH and perfused via the aorta using a Langendorff preparation. We explored the Frank–Starling relationship of RV function (RV developed pressure, dP/dtmax, and dP/dtmin; all normalized to RV mass) by increasing RV end‐diastolic pressure (RVEDP) from 0 to 40 mmHg. Functional studies were complemented by quantification of RV pro‐apoptotic signaling (bcl2/bax), procontractile signaling (apelin), and stress response signaling (p38MAPK activation). Pearson's correlation analysis was performed for functional and biochemical parameters. SuHx‐RVs exhibited severe RV dysfunction with marked hypertrophy and decreased echocardiographic cardiac output. For any given RVEDP, SuHx‐RVs demonstrated less developed pressure and lower dP/dtmax, as well as less pronounced dP/dtmin, suggestive of decreased contractile and diastolic function. SuHx‐RVs exhibited decreased bcl2/bax ratios, apelin expression, and p38MAPK activation. Bcl2/bax and apelin RNA abundance correlated positively with RV developed pressure and dP/dtmax and negatively with dP/dtmin. p38MAPK activation correlated positively with RV developed pressure. We conclude that SuHx‐RVs exhibit severe contractile and diastolic dysfunction. Increased pro‐apoptotic signaling and attenuated procontractile and stress response signaling may contribute to these functional alterations.
Collapse
Affiliation(s)
- Evandro M Neto-Neves
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrea L Frump
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alexandra Vayl
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jeffrey A Kline
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana .,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
31
|
Westerhof BE, Saouti N, van der Laarse WJ, Westerhof N, Vonk Noordegraaf A. Treatment strategies for the right heart in pulmonary hypertension. Cardiovasc Res 2017; 113:1465-1473. [PMID: 28957540 PMCID: PMC5852547 DOI: 10.1093/cvr/cvx148] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/15/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023] Open
Abstract
The function of the right ventricle (RV) determines the prognosis of patients with pulmonary hypertension. While much progress has been made in the treatment of pulmonary hypertension, therapies for the RV are less well established. In this review of treatment strategies for the RV, first we focus on ways to reduce wall stress since this is the main determinant of changes to the ventricle. Secondly, we discuss treatment strategies targeting the detrimental consequences of increased RV wall stress. To reduce wall stress, afterload reduction is the essential. Additionally, preload to the ventricle can be reduced by diuretics, by atrial septostomy, and potentially by mechanical ventricular support. Secondary to ventricular wall stress, left-to-right asynchrony, altered myocardial energy metabolism, and neurohumoral activation will occur. These may be targeted by optimising RV contraction with pacing, by iron supplement, by angiogenesis and improving mitochondrial function, and by neurohumoral modulation, respectively. We conclude that several treatment strategies for the right heart are available; however, evidence is still limited and further research is needed before clinical application can be recommended.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/therapeutic use
- Animals
- Antihypertensive Agents/adverse effects
- Antihypertensive Agents/therapeutic use
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/therapy
- Arterial Pressure/drug effects
- Cardiac Resynchronization Therapy
- Cardiac Resynchronization Therapy Devices
- Diuretics/therapeutic use
- Energy Metabolism/drug effects
- Heart-Assist Devices
- Humans
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiopathology
- Treatment Outcome
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/therapy
- Ventricular Function, Right/drug effects
Collapse
Affiliation(s)
- Berend E. Westerhof
- Department of Pulmonary Diseases, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands
| | - Nabil Saouti
- Department of Cardio-Thoracic Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Willem J. van der Laarse
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Nico Westerhof
- Department of Pulmonary Diseases, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonary Diseases, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
32
|
van der Bruggen CE, Tedford RJ, Handoko ML, van der Velden J, de Man FS. RV pressure overload: from hypertrophy to failure. Cardiovasc Res 2017; 113:1423-1432. [DOI: 10.1093/cvr/cvx145] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/31/2017] [Indexed: 01/31/2023] Open
Affiliation(s)
- Cathelijne E.E. van der Bruggen
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Frances S. de Man
- Department of Pulmonology, Amsterdam Cardiovascular Sciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|