1
|
Woxholt S, Ueland T, Aukrust P, Anstensrud AK, Broch K, Tøllefsen IM, Seljeflot I, Halvorsen B, Dahl TB, Huse C, Andersen GØ, Gullestad L, Wiseth R, Damås JK, Kleveland O. Effect of tocilizumab on endothelial and platelet-derived CXC-chemokines and their association with inflammation and myocardial injury in STEMI patients undergoing primary PCI. Int J Cardiol 2025; 418:132613. [PMID: 39374793 DOI: 10.1016/j.ijcard.2024.132613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/29/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Tocilizumab improves myocardial salvage in ST-elevation myocardial infarction (STEMI) patients when administered before percutaneous coronary intervention (PCI). The mechanisms underlying ischemia-reperfusion injury remain unclear. In this sub-study, we investigated whether endothelial and platelet-derived CXC chemokines are involved, as they represent inflammatory mediators from two cell types relevant to myocardial infarction. Associations between these chemokines and neutrophils, C-reactive protein (CRP), troponin T (TnT), myocardial salvage index (MSI), microvascular obstruction (MVO), and infarct size. METHODS This is a sub-study of the ASSAIL-MI trial, a double-blind clinical trial that randomized 199 STEMI patients to receive either 280 mg tocilizumab (n = 101) or placebo (n = 98) intravenously before PCI. Blood samples were collected prior to infusion, at day 1-2, 3-7, and at 3 and 6 months. Heparin was administered before baseline in 150 patients, while 49 received it after. We measured CXC-chemokines CXCL4, CXCL5, CXCL6, CXCL7, and CXCL12 using immunoassays. Cardiac MRI was performed in the first week and at 6 months. RESULTS Tocilizumab did not significantly affect CXC-chemokines levels. Although some correlations were observed between chemokine levels and neutrophil counts and CRP, none of the CXC chemokines were associated with infarct size, MSI, MVO, or TnT levels. Notably, CXCL 12 levels increased in patients who received heparin before baseline, while other CXC-chemokines decreased significantly. CONCLUSION This study suggests that the beneficial effects of tocilizumab in STEMI patients are not due to changes in circulating endothelial or platelet-derived CXC-chemokines, compared to placebo. However, heparin significantly influences the levels of these chemokines.
Collapse
Affiliation(s)
- Sindre Woxholt
- Clinic of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Thrombosis Research and Expertise Center (TREC), The Arctic University of Norway, Tromsø, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Disease, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway
| | | | - Ingebjørg Seljeflot
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tuva B Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Geir Øystein Andersen
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Department of Cardiology, Oslo Center for Clinical Heart Research, Oslo University Hospital Ullevål, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen Cardiac Research Centre and Centre for Heart Failure Research, University of Oslo, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rune Wiseth
- Clinic of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Kristian Damås
- Department of Infectious Disease, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of clinical and Molecular medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Kleveland
- Clinic of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Ząbczyk M, Natorska J, Matusik PT, Mołek P, Wojciechowska W, Rajzer M, Rajtar-Salwa R, Tokarek T, Lenart-Migdalska A, Olszowska M, Undas A. Neutrophil-activating Peptide 2 as a Novel Modulator of Fibrin Clot Properties in Patients with Atrial Fibrillation. Transl Stroke Res 2024; 15:773-783. [PMID: 37294500 PMCID: PMC10250863 DOI: 10.1007/s12975-023-01165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Neutrophil-activating peptide 2 (NAP-2, CXCL7), a platelet-derived neutrophil chemoattractant, is involved in inflammation. We investigated associations between NAP-2 levels, neutrophil extracellular traps (NETs) formation, and fibrin clot properties in atrial fibrillation (AF). We recruited 237 consecutive patients with AF (mean age, 68 ± 11 years; median CHA2DS2VASc score of 3 [2-4]) and 30 apparently healthy controls. Plasma NAP-2 concentrations were measured, along with plasma fibrin clot permeability (Ks) and clot lysis time (CLT), thrombin generation, citrullinated histone H3 (citH3), as a marker of NETs formation, and 3-nitrotyrosine reflecting oxidative stress. NAP-2 levels were 89% higher in AF patients than in controls (626 [448-796] vs. 331 [226-430] ng/ml; p < 0.0001). NAP-2 levels were not associated with demographics, CHA2DS2-VASc score, or the AF manifestation. Patients with NAP-2 in the top quartile (> 796 ng/ml) were characterized by higher neutrophil count (+ 31.7%), fibrinogen (+ 20.8%), citH3 (+ 86%), and 3-nitrotyrosine (+ 111%) levels, along with 20.2% reduced Ks and 8.4% prolonged CLT as compared to the remaining subjects (all p < 0.05). NAP-2 levels were positively associated with fibrinogen in AF patients (r = 0.41, p = 0.0006) and controls (r = 0.65, p < 0.01), along with citH3 (r = 0.36, p < 0.0001) and 3-nitrotyrosine (r = 0.51, p < 0.0001) in the former group. After adjustment for fibrinogen, higher citH3 (per 1 ng/ml β = -0.046, 95% CI -0.029; -0.064) and NAP-2 (per 100 ng/ml β = -0.21, 95% CI -0.14; -0.28) levels were independently associated with reduced Ks. Elevated NAP-2, associated with increased oxidative stress, has been identified as a novel modulator of prothrombotic plasma fibrin clot properties in patients with AF.
Collapse
Affiliation(s)
- Michał Ząbczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80, 31-202, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, the John Paul II Hospital, Pradnicka 80, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80, 31-202, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, the John Paul II Hospital, Pradnicka 80, Krakow, Poland
| | - Paweł T Matusik
- Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Pradnicka 80, Kraków, Poland
- Department of Electrocardiology, the John Paul II Hospital, Pradnicka 80, Kraków, Poland
| | - Patrycja Mołek
- Krakow Centre for Medical Research and Technologies, the John Paul II Hospital, Pradnicka 80, Krakow, Poland
| | - Wiktoria Wojciechowska
- 1st Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, Jakubowskiego 2, Kraków, Poland
| | - Marek Rajzer
- 1st Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, Jakubowskiego 2, Kraków, Poland
| | - Renata Rajtar-Salwa
- Department of Cardiology and Cardiovascular Interventions, University Hospital, Jakubowskiego 2, Krakow, Poland
| | - Tomasz Tokarek
- Center for Invasive Cardiology, Electrotherapy and Angiology, Kilinskiego 68, Nowy Sacz, Poland
- Center for Innovative Medical Education, Jagiellonian University Medical College, Medyczna 9, Krakow, Poland
| | - Aleksandra Lenart-Migdalska
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Pradnicka 80, Kraków, Poland
| | - Maria Olszowska
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Institute of Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Pradnicka 80, Kraków, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Pradnicka 80, 31-202, Krakow, Poland.
- Krakow Centre for Medical Research and Technologies, the John Paul II Hospital, Pradnicka 80, Krakow, Poland.
| |
Collapse
|
3
|
Chang Y, Xu M, Zhang Y, Chen X, Sheng Y, Tao M, Zhang H, Xu Z, Hu S, Song J. Ruxolitinib attenuates acute rejection and can serve as an immune induction therapy in heart transplantation. Clin Immunol 2023; 257:109851. [PMID: 38008145 DOI: 10.1016/j.clim.2023.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
The benefits of IL2RA antagonists in heart transplant patients are controversial. We aimed to elucidate the effects of IL2RA antagonists and identify targets that could be better than IL2RA antagonists. By using single-cell RNA sequencing of immune cells at different time points in patients receiving IL2RA antagonists, we identified nineteen types of cells. We revealed higher IL2RA expression in regulatory T cells (Tregs), suggesting that IL2RA antagonists attenuated IL-2-induced Treg activation. CD4_C04_IFNGR1 and CD8_C05_IFITM2 which had more cytotoxic effects, remained elevated at later time points. IFNGR1 was upregulated in these two subtypes, but was not expressed in Treg. Ruxolitinib targeted the pathways of IFNGR1 (JAK1/2) while not affecting the pathway of IL-2-induced Tregs activation (JAK3). Ruxolitinib showed prolonged survival compared to IL2RA mAb-treated mice. Our study provided dynamic changes of immune cells after IL2RA antagonists treatment at single-cell resolution. Ruxolitinib has potential as a new immunoinduction therapy without affecting Treg.
Collapse
Affiliation(s)
- Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Mengda Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Yu Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Menghao Tao
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Zhenyu Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Shengshou Hu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; The Cardiomyopathy Research Group at Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| |
Collapse
|
4
|
Kollikowski AM, Pham M, März AG, Papp L, Nieswandt B, Stoll G, Schuhmann MK. Platelet Activation and Chemokine Release Are Related to Local Neutrophil-Dominant Inflammation During Hyperacute Human Stroke. Transl Stroke Res 2021; 13:364-369. [PMID: 34455571 PMCID: PMC9046342 DOI: 10.1007/s12975-021-00938-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Experimental evidence has emerged that local platelet activation contributes to inflammation and infarct formation in acute ischemic stroke (AIS) which awaits confirmation in human studies. We conducted a prospective observational study on 258 consecutive patients undergoing mechanical thrombectomy (MT) due to large-vessel-occlusion stroke of the anterior circulation (08/2018–05/2020). Intraprocedural microcatheter aspiration of 1 ml of local (occlusion condition) and systemic arterial blood samples (self-control) was performed according to a prespecified protocol. The samples were analyzed for differential leukocyte counts, platelet counts, and plasma levels of the platelet-derived neutrophil-activating chemokine C-X-C-motif ligand (CXCL) 4 (PF-4), the neutrophil attractant CXCL7 (NAP-2), and myeloperoxidase (MPO). The clinical-biological relevance of these variables was corroborated by specific associations with molecular-cellular, structural-radiological, hemodynamic, and clinical-functional parameters. Seventy consecutive patients fulfilling all predefined criteria entered analysis. Mean local CXCL4 (+ 39%: 571 vs 410 ng/ml, P = .0095) and CXCL7 (+ 9%: 693 vs 636 ng/ml, P = .013) concentrations were higher compared with self-controls. Local platelet counts were lower (− 10%: 347,582 vs 383,284/µl, P = .0052), whereas neutrophil counts were elevated (+ 10%: 6022 vs 5485/µl, P = 0.0027). Correlation analyses revealed associations between local platelet and neutrophil counts (r = 0.27, P = .034), and between CXCL7 and MPO (r = 0.24, P = .048). Local CXCL4 was associated with the angiographic degree of reperfusion following recanalization (r = − 0.2523, P = .0479). Functional outcome at discharge correlated with local MPO concentrations (r = 0.3832, P = .0014) and platelet counts (r = 0.288, P = .0181). This study provides human evidence of cerebral platelet activation and platelet-neutrophil interactions during AIS and points to the relevance of per-ischemic thrombo-inflammatory mechanisms to impaired reperfusion and worse functional outcome following recanalization.
Collapse
Affiliation(s)
- Alexander M Kollikowski
- Department of Neuroradiology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| | - Alexander G März
- Department of Neuroradiology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Lena Papp
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Michael K Schuhmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| |
Collapse
|
5
|
Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Type 2 Diabetes Coagulopathy Proteins May Conflict With Biomarkers Reflective of COVID-19 Severity. Front Endocrinol (Lausanne) 2021; 12:658304. [PMID: 34248840 PMCID: PMC8267927 DOI: 10.3389/fendo.2021.658304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Detailed proteomic analysis in a cohort of patients with differing severity of COVID-19 disease identified biomarkers within the complement and coagulation cascades as biomarkers for disease severity has been reported; however, it is unclear if these proteins differ sufficiently from other conditions to be considered as biomarkers. METHODS A prospective, parallel study in T2D (n = 23) and controls (n = 23). A hyperinsulinemic clamp was performed and normoglycemia induced in T2D [4.5 ± 0.07 mmol/L (81 ± 1.2 mg/dl)] for 1-h, following which blood glucose was decreased to ≤2.0 mmol/L (36 mg/dl). Proteomic analysis for the complement and coagulation cascades were measured using Slow Off-rate Modified Aptamer (SOMA)-scan. RESULTS Thirty-four proteins were measured. At baseline, 4 of 18 were found to differ in T2D versus controls for platelet degranulation [Neutrophil-activating peptide-2 (p = 0.014), Thrombospondin-1 (p = 0.012), Platelet factor-4 (p = 0.007), and Kininogen-1 (p = 0.05)], whilst 3 of 16 proteins differed for complement and coagulation cascades [Coagulation factor IX (p < 0.05), Kininogen-1 (p = 0.05), and Heparin cofactor-2 (p = 0.007)]; STRING analysis demonstrated the close relationship of these proteins to one another. Induced euglycemia in T2D showed no protein changes versus baseline. At hypoglycemia, however, four proteins changed in controls from baseline [Thrombospondin-1 (p < 0.014), platelet factor-4 (p < 0.01), Platelet basic protein (p < 0.008), and Vitamin K-dependent protein-C (p < 0.00003)], and one protein changed in T2D [Vitamin K-dependent protein-C, (p < 0.0002)]. CONCLUSION Seven of 34 proteins suggested to be biomarkers of COVID-19 severity within the platelet degranulation and complement and coagulation cascades differed in T2D versus controls, with further changes occurring at hypoglycemia, suggesting that validation of these biomarkers is critical. It is unclear if these protein changes in T2D may predict worse COVID-19 disease for these patients. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/, identifier NCT03102801.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed Al-Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
- Department of Endocrinology, Leeds Medical School, Leeds, United Kingdom
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Stephen L. Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Alexandra E. Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- *Correspondence: Alexandra E. Butler, ;
| |
Collapse
|
6
|
Mapping of type 2 diabetes proteins to COVID-19 biomarkers: A proteomic analysis. Metabol Open 2020; 9:100074. [PMID: 33364597 PMCID: PMC7753193 DOI: 10.1016/j.metop.2020.100074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
|
7
|
Wang X, Li J, Gan L, Liu Q. Plasma NAP-2 levels are associated with critical limb ischemia in peripheral arterial disease patients. Exp Biol Med (Maywood) 2019; 244:22-27. [PMID: 30638058 DOI: 10.1177/1535370218823684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT Critical limb ischemia (CLI) is a serious arterial obstruction, resulting in serious reduction of blood flow to the extremities. CLI is a symptomatic disorder and is frequently not diagnosed in time. This results in a high mortality and elevated risk of limb amputation. Serum or plasma biomarkers play important roles in disease prevention, diagnosis, and prognosis. Elevated plasma neutrophil-activating peptide-2 (NAP-2) was found independently associated with CLI, but not with T2DM. Plasma NAP-2 levels might be an early CLI diagnostic biomarker and might provide a novel target for CLI treatment.
Collapse
Affiliation(s)
- Xiufang Wang
- 1 Department of Pain, Tongji Medical College, Huazhong University of Science and Technology, The Central Hospital of Wuhan, Wuhan 430021, China
| | - Juyi Li
- 2 Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, The Central Hospital of Wuhan, Wuhan 430021, China
| | - Liming Gan
- 3 Department of Endocrinology, Tongji Medical College, Huazhong University of Science and Technology, The Central Hospital of Wuhan, Wuhan 430021, China
| | - Qun Liu
- 4 Department of Endocrinology, Tongren Hospital of Wuhan University & Wuhan Third Hospital, Wuhan 430060, China
| |
Collapse
|
8
|
Yang JX, Pan YY, Wang XX, Qiu YG, Mao W. Endothelial progenitor cells in age-related vascular remodeling. Cell Transplant 2018; 27:786-795. [PMID: 29882417 PMCID: PMC6047273 DOI: 10.1177/0963689718779345] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has demonstrated that endothelial progenitor cells (EPCs) could facilitate the reendothelialization of injured arteries by replacing the dysfunctional endothelial cells, thereby suppressing the formation of neointima. Meanwhile, other findings suggest that EPCs may be involved in the pathogenesis of age-related vascular remodeling. This review is presented to summarize the characteristics of EPCs and age-related vascular remodeling. In addition, the role of EPCs in age-related vascular remodeling and possible solutions for improving the therapeutic effects of EPCs in the treatment of age-related diseases are discussed.
Collapse
Affiliation(s)
- Jin-Xiu Yang
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China.,2 Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yan-Yun Pan
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Xing-Xiang Wang
- 2 Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yuan-Gang Qiu
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Wei Mao
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
9
|
Seldin MM, Koplev S, Rajbhandari P, Vergnes L, Rosenberg GM, Meng Y, Pan C, Phuong TMN, Gharakhanian R, Che N, Mäkinen S, Shih DM, Civelek M, Parks BW, Kim ED, Norheim F, Chella Krishnan K, Hasin-Brumshtein Y, Mehrabian M, Laakso M, Drevon CA, Koistinen HA, Tontonoz P, Reue K, Cantor RM, Björkegren JLM, Lusis AJ. A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metab 2018; 27:1138-1155.e6. [PMID: 29719227 PMCID: PMC5935137 DOI: 10.1016/j.cmet.2018.03.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/14/2017] [Accepted: 03/24/2018] [Indexed: 12/16/2022]
Abstract
Inter-tissue communication via secreted proteins has been established as a vital mechanism for proper physiologic homeostasis. Here, we report a bioinformatics framework using a mouse reference population, the Hybrid Mouse Diversity Panel (HMDP), which integrates global multi-tissue expression data and publicly available resources to identify and functionally annotate novel circuits of tissue-tissue communication. We validate this method by showing that we can identify known as well as novel endocrine factors responsible for communication between tissues. We further show the utility of this approach by identification and mechanistic characterization of two new endocrine factors. Adipose-derived Lipocalin-5 is shown to enhance skeletal muscle mitochondrial function, and liver-secreted Notum promotes browning of white adipose tissue, also known as "beiging." We demonstrate the general applicability of the method by providing in vivo evidence for three additional novel molecules mediating tissue-tissue interactions.
Collapse
Affiliation(s)
- Marcus M Seldin
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory M Rosenberg
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonghong Meng
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thuy M N Phuong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raffi Gharakhanian
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nam Che
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Selina Mäkinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Diana M Shih
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Eric D Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Margarete Mehrabian
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heikki A Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rita M Cantor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
|
11
|
Karshovska E, Weber C, Hundelshausen PV. Platelet chemokines in health and disease. Thromb Haemost 2017; 110:894-902. [DOI: 10.1160/th13-04-0341] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/17/2013] [Indexed: 12/12/2022]
Abstract
SummaryIn recent years, it has become clear that platelets and platelet-derived chemokines, beyond their role in thrombosis and haemostasis, are important mediators affecting a broad spectrum of (patho)physiological conditions. These biologically active proteins are released from α-granules upon platelet activation, most probably even during physiological conditions. In this review, we give a concise overview and an update on the current understanding of platelet-derived chemokines in a context of health and disease.Note: The review process for this manuscript was fully handled by G. Y. H. Lip, Editor in Chief.
Collapse
|
12
|
Wodicka JR, Chambers AM, Sangha GS, Goergen CJ, Panitch A. Development of a Glycosaminoglycan Derived, Selectin Targeting Anti-Adhesive Coating to Treat Endothelial Cell Dysfunction. Pharmaceuticals (Basel) 2017; 10:ph10020036. [PMID: 28353658 PMCID: PMC5490393 DOI: 10.3390/ph10020036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022] Open
Abstract
Endothelial cell (EC) dysfunction is associated with many disease states including deep vein thrombosis (DVT), chronic kidney disease, sepsis and diabetes. Loss of the glycocalyx, a thin glycosaminoglycan (GAG)-rich layer on the EC surface, is a key feature of endothelial dysfunction and increases exposure of EC adhesion molecules such as selectins, which are involved in platelet binding to ECs. Once bound, platelets cause thrombus formation and an increased inflammatory response. We have developed a GAG derived, selectin targeting anti-adhesive coating (termed EC-SEAL) consisting of a dermatan sulfate backbone and multiple selectin-binding peptides designed to bind to inflamed endothelium and prevent platelet binding to create a more quiescent endothelial state. Multiple EC-SEAL variants were evaluated and the lead variant was found to preferentially bind to selectin-expressing ECs and smooth muscle cells (SMCs) and inhibit platelet binding and activation in a dose-dependent manner. In an in vivo model of DVT, treatment with the lead variant resulted in reduced thrombus formation. These results indicate that EC-SEAL has promise as a potential therapeutic in the treatment of endothelial dysfunction.
Collapse
Affiliation(s)
- James R Wodicka
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Andrea M Chambers
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Gurneet S Sangha
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Combined Usefulness of the Platelet-to-Lymphocyte Ratio and the Neutrophil-to-Lymphocyte Ratio in Predicting the Long-Term Adverse Events in Patients Who Have Undergone Percutaneous Coronary Intervention with a Drug-Eluting Stent. PLoS One 2015. [PMID: 26207383 PMCID: PMC4514869 DOI: 10.1371/journal.pone.0133934] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate the combined usefulness of platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) in predicting the long-term adverse events in patients who have undergone percutaneous coronary intervention (PCI) with a drug-eluting stent (DES). METHODS 798 patients with stable angina, unstable angina and non-ST elevated myocardial infarction (NSTEMI) who underwent elective successful PCI with DES were consecutively enrolled. The value of PLR and NLR in predicting adverse coronary artery disease (CAD) events and the correlations between these markers and adverse events (all-cause mortality, cardiac death, and nonfatal myocardial infarction) were analyzed. RESULTS The follow-up period was 62.8 ± 28.8 months. When patients were classified into four groups according to the optimal cut-off values for the PLR and NLR on receiver operating characteristic analysis, patients with a high PLR (>128) and high NLR (>2.6) had the highest occurrence of adverse events among the groups. On Cox multivariate analysis, the NLR >2.6 [hazard ratio (HR) 2.352, 95% confidence interval (CI) 1.286 to 4.339, p = 0.006] and the PLR >128 (HR 2.372, 95% CI 1.305 to 3.191, p = 0.005) were independent predictors of long-term adverse events after adjusting for cardiovascular risk factors. Moreover, both a PLR >128 and a NLR >2.6 were the strongest predictors of adverse events (HR 2.686, 95% CI 1.452 to 4.970, p = 0.002). CONCLUSION High pre-intervention PLR and NLR, especially when combined, are independent predictors of long-term adverse clinical outcomes such as all-cause mortality, cardiac death, and myocardial infarction in patients with unstable angina and NSTEMI who have undergone successful PCI with DES.
Collapse
|
14
|
Discovery and validation of an INflammatory PROtein-driven GAstric cancer Signature (INPROGAS) using antibody microarray-based oncoproteomics. Oncotarget 2015; 5:1942-54. [PMID: 24722433 PMCID: PMC4039123 DOI: 10.18632/oncotarget.1879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study aimed to improve gastric cancer (GC) diagnosis by identifying and validating an INflammatory PROtein-driven GAstric cancer Signature (hereafter INPROGAS) using low-cost affinity proteomics. The detection of 120 cytokines, 43 angiogenic factors, 41 growth factors, 40 inflammatory factors and 10 metalloproteinases was performed using commercially available human antibody microarray-based arrays. We identified 21 inflammation-related proteins (INPROGAS) with significant differences in expression between GC tissues and normal gastric mucosa in a discovery cohort of matched pairs (n=10) of tumor/normal gastric tissues. Ingenuity pathway analysis confirmed the "inflammatory response", "cellular movement" and "immune cell trafficking" as the most overrepresented biofunctions within INPROGAS. Using an expanded independent validation cohort (n = 22), INPROGAS classified gastric samples as "GC" or "non-GC" with a sensitivity of 82% (95% CI 59-94) and a specificity of 73% (95% CI 49-89). The positive predictive value and negative predictive value in this validation cohort were 75% (95% CI 53-90) and 80% (95% CI 56-94), respectively. The positive predictive value and negative predictive value in this validation cohort were 75% (95% CI 53-90) and 80% (95% CI 56-94), respectively. Antibody microarray analyses of the GC-associated inflammatory proteome identified a 21-protein INPROGAS that accurately discriminated GC from noncancerous gastric mucosa.
Collapse
|
15
|
Ni J, Ma X, Zhou M, Pan X, Tang J, Hao Y, Lu Z, Gao M, Bao Y, Jia W. Serum lipocalin-2 levels positively correlate with coronary artery disease and metabolic syndrome. Cardiovasc Diabetol 2013; 12:176. [PMID: 24359145 PMCID: PMC3878105 DOI: 10.1186/1475-2840-12-176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 11/26/2022] Open
Abstract
Background The lipocalin-2 (LCN2) cytokine, primarily known as a protein of the granules of human neutrophils, has been recently reported to be implicated in metabolic and inflammatory disorders. This study was designed to evaluate the relationship between serum LCN2 levels and coronary artery disease (CAD). Methods Serum LCN2 levels of 261 in-patients who underwent coronary angiography were measured by sandwich enzyme immunoassay. Demographic (169 men and 92 postmenopausal women) and clinical (metabolic syndrome (MS), triglyceride (TG) and C-reactive protein (CRP) levels) characteristics were collected to assess independent factors of CAD (CAD: 188 and non-CAD: 73) and serum LCN2 levels by multiple logistic regression and multivariate stepwise regression analyses, respectively. Results Serum LCN2 levels were significantly higher in men (37.5 (27.4-55.4) vs. women: 28.2 (18.7-45.9) ng/mL, p < 0.01) and men with CAD (39.2 (29.3-56.5) vs. non-CAD men: 32.7 (20.5-49.7) ng/mL, p < 0.05), and showed significant positive correlation with CAD in men (odds ratio = 2.218, 95% confidence interval: 1.017-4.839). Similarly, serum LCN2 levels were significantly higher in men with MS (40.2 (31.9-59.4) vs. non-MS: 32.0 (21.7-47.6) ng/mL, p < 0.01) and showed a significant positive correlation with the number of MS components (p for trend < 0.05). No significant differences or correlations were seen in women. TG and neutrophils (standard β = 0.238 and 0.173) were independent factors of serum LCN2 levels in men, and only neutrophils (standard β = 0.286) affected levels in women (all p < 0.05). Conclusions Increased serum LCN2 levels are positively correlated with the presence of CAD and MS in a Chinese cohort.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Diabetes Institute, 600 Yishan Road, Shanghai, 200233, China.
| | | |
Collapse
|
16
|
Carbone F, Nencioni A, Mach F, Vuilleumier N, Montecucco F. Pathophysiological role of neutrophils in acute myocardial infarction. Thromb Haemost 2013; 110:501-514. [PMID: 23740239 DOI: 10.1160/th13-03-0211] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/04/2013] [Indexed: 12/13/2022]
Abstract
The pathogenesis of acute myocardial infarction is known to be mediated by systemic, intraplaque and myocardial inflammatory processes. Among different immune cell subsets, compelling evidence now indicates a pivotal role for neutrophils in acute coronary syndromes. Neutrophils infiltrate coronary plaques and the infarcted myocardium and mediate tissue damage by releasing matrix-degrading enzymes and reactive oxygen species. In addition, neutrophils are also involved in post-infarction adverse cardiac remodelling and neointima formation after angioplasty. The promising results obtained in preclinical modelswith pharmacological approaches interfering with neutrophil recruitment or function have confirmed the pathophysiological relevance of these immune cells in acute coronary syndromes and prompted further studies of these therapeutic interventions. This narrative review will provide an update on the role of neutrophils in acute myocardial infarction and on the pharmacological means that were devised to prevent neutrophil-mediated tissue damage and to reduce post-ischaemic outcomes.
Collapse
Affiliation(s)
- F Carbone
- Fabrizio Montecucco, Cardiology Division, Department of Medicine, Geneva University Hospital, Foundation for Medical Researches, 64 Avenue Roseraie, 1211 Geneva, Switzerland, Tel.: +41 223827238, Fax: +41 223827245, E-mail:
| | | | | | | | | |
Collapse
|
17
|
E-selectin mediated adhesion and migration of endothelial colony forming cells is enhanced by SDF-1α/CXCR4. PLoS One 2013; 8:e60890. [PMID: 23565284 PMCID: PMC3614942 DOI: 10.1371/journal.pone.0060890] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 03/05/2013] [Indexed: 12/02/2022] Open
Abstract
Objective Endothelial-colony forming cells (ECFCs) can be readily expanded from human umbilical cord blood and can facilitate repair of endothelial injury. E-selectin and SDF-1α are produced following endothelial injury and can regulate endothelial progenitor homing. Mechanisms of vascular repair specific to the mode of injury have not been well described in homogenous cell populations such as ECFCs and are needed for development of more effective vascular repair strategies. Methods and Results Lipopolysaccharide (LPS)-induced endotoxic injury to mature human umbilical vein endothelial cells (HUVEC) was compared with hypoxic and radiation injury. E-selectin expression in HUVEC cells is markedly increased (208-fold) following LPS-induced injury and facilitates increased ECFC adhesion and migration function in vitro. SDF-1α expression remains unchanged in LPS-treated HUVEC cells but increases more than 2 fold in fibroblasts undergoing similar endotoxic injury. SDF-1α induces expression of E-selectin ligands on ECFCs and facilitates greater E-selectin-mediated adhesion and migration of ECFCs in a CXCR4-dependent manner. Induction of E-selectin expression in HUVECs following hypoxic or radiation injury is negligible, however, while SDF-1α is increased markedly following hypoxia, highlighting injury-specific synergism between mediators of vascular repair. Conclusion E-selectin mediates adhesion and migration of ECFCs following endotoxic endothelial injury. SDF-1α augments E-selectin mediated ECFC adhesion and migration in a CXCR4-dependent manner.
Collapse
|
18
|
Chronic dysfunction of the endothelium is associated with mortality in acute coronary syndrome patients. Thromb Res 2013; 131:198-203. [DOI: 10.1016/j.thromres.2012.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 11/22/2022]
|
19
|
Dong SY, Sun XN, Zeng Q, Xu Y, Sun J, Ma LH. Proteomic analysis of adverse outcomes in patients with acute coronary syndromes. Clin Chim Acta 2013. [DOI: 10.1016/j.cca.2012.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Iqbal N, Choudhary R, Chan J, Wentworth B, Higginbotham E, Maisel AS. Neutrophil gelatinase-associated lipocalin as diagnostic and prognostic tool for cardiovascular disease and heart failure. ACTA ACUST UNITED AC 2013; 7:209-20. [DOI: 10.1517/17530059.2013.763795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Bonten TN, Snoep JD, Roest M, Rosendaal FR, van der Bom JG. Platelet reactivity is not associated with recurrent cardiovascular events in men with a history of myocardial infarction: a cohort study. J Thromb Haemost 2012; 10:2616-8. [PMID: 23072487 DOI: 10.1111/jth.12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Lindberg S, Pedersen SH, Mogelvang R, Jensen JS, Flyvbjerg A, Galatius S, Magnusson NE. Prognostic utility of neutrophil gelatinase-associated lipocalin in predicting mortality and cardiovascular events in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J Am Coll Cardiol 2012; 60:339-45. [PMID: 22813613 DOI: 10.1016/j.jacc.2012.04.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/04/2012] [Accepted: 04/12/2012] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the prognostic role of neutrophil gelatinase-associated lipocalin (NGAL) in a large population of patients with ST-segment elevation myocardial infarction. BACKGROUND NGAL is a glycoprotein released by damaged renal tubular cells and is a sensitive maker of both clinical and subclinical acute kidney injury. New data have demonstrated that NGAL is also stored in granules of mature neutrophils, and recent data suggest that NGAL may also be involved in the development of atherosclerosis. NGAL is significantly increased in patients with myocardial infarction compared with patients with stable coronary artery disease and healthy subjects. However, the prognostic value of NGAL has never been studied in patients with myocardial infarction. METHODS We included 584 consecutive ST-segment elevation myocardial infarction patients admitted to the heart center of Gentofte University Hospital, Denmark, and treated with primary percutaneous coronary intervention, from September 2006 to December 2008. Blood samples were drawn immediately before primary percutaneous coronary intervention. Plasma NGAL levels were measured using a time-resolved immunofluorometric assay. The endpoints were all-cause mortality (n = 69) and the combined endpoints (n = 116) of major adverse cardiac events (MACE) defined as cardiovascular mortality and admission due to recurrent myocardial infarction or heart failure. The median follow-up time was 23 months (interquartile range, 20 to 24 months). RESULTS Patients with high NGAL (>75th percentile) had increased risk of all-cause mortality and MACE compared with patients with low NGAL (log-rank test, p < 0.001). After adjustment for confounding risk factors chosen by backward elimination by Cox regression analysis, high NGAL remained an independent predictor of all-cause mortality and MACE (hazard ratio: 2.00; 95% confidence interval: 1.16 to 3.44; p = 0.01 and hazard ratio: 1.51; 95% confidence interval: 1.00 to 2.30; p = 0.05, respectively). CONCLUSIONS High plasma NGAL independently predicts all-cause mortality and MACE in ST-segment elevation myocardial infarction patients treated with primary percutaneous coronary intervention.
Collapse
Affiliation(s)
- Søren Lindberg
- Department of Cardiology, Gentofte University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
23
|
Sharma G, Berger JS. Platelet activity and cardiovascular risk in apparently healthy individuals: a review of the data. J Thromb Thrombolysis 2011; 32:201-8. [PMID: 21562837 DOI: 10.1007/s11239-011-0590-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality. Numerous risk scores exist to identify healthy individuals at increased risk of developing cardiovascular disease. Although platelets are a key mediator in the pathogenesis of cardiovascular disease, the role of platelet activity measurements and the incidence of cardiovascular disease are uncertain. Platelet aggregometry-the most well studied method of platelet function testing-is associated with risk factors for cardiovascular disease. However, data supporting platelet aggregation and incident cardiovascular disease is conflicting. Plasma markers of platelet activation are promising candidates. Soluble CD40L and P-selectin are easily measured with a standardized ELISA, and there is some data to suggest an association with cardiovascular disease, but further studies are required. While mean platelet volume is a promising candidate, platelet count and bleeding time are not specific for platelet activity nor are they associated with cardiovascular disease in a healthy population. For this field to progress, we recommend large-scale, prospective studies that measure a battery of these platelet function tests in individuals without cardiovascular disease to better understand the associations, if any, between platelet activity and cardiovascular disease.
Collapse
Affiliation(s)
- Gaurav Sharma
- Division of Cardiology, Department of Medicine, New York University School of Medicine, 530 First Avenue, Skirball 9R, New York, NY 10016, USA
| | | |
Collapse
|
24
|
Pereira J, Sáez CG, Pallavicini J, Panes O, Pereira-Flores K, Cabreras MJ, Massardo T, Mezzano D. Platelet activation in chronic cocaine users: effect of short term abstinence. Platelets 2011; 22:596-601. [PMID: 21806491 DOI: 10.3109/09537104.2011.578181] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cocaine abuse increases the risk of cardiac and cerebrovascular events, such as myocardial infarction and ischemic stroke. The underlying mechanisms leading to these complications are not fully understood although intravascular thrombus formation has been observed. The aim of this study was to investigate the existence of platelet activation and the effect of short-term abstinence in chronic cocaine consumers. We studied 23 cocaine dependent individuals (aged 20-54 years) who met DSM-IV criteria for cocaine dependence and 20 controls. Samples were obtained at baseline, within 72 h of last drug exposure and after 4 weeks of controlled abstinence. Monocyte-platelet aggregates (MPA) were measured by flow cytometry. Plasma levels of soluble CD40L (sCD40L), Neutrophil-Activating Peptide-2 (NAP-2) and regulated on activation normal T cells expressed and secreted (RANTES) were determined by ELISA. Levels of MPA, sCD40L, NAP-2 and RANTES were significantly higher (all p < 0.05) in cocaine addicts compared to controls at baseline. All the parameters returned to values similar to the control group after 4-weeks' abstinence. Levels of sCD40L and RANTES were associated with an index of intensity of drug consumption (p < 0.02). Our results demonstrate that cocaine use induces platelet activation which is a prominent finding after recent consumption. The persistence over time of this condition may contribute not only to acute thrombotic complications but also to the development of early-onset atherosclerotic process observed in cocaine abusers.
Collapse
Affiliation(s)
- Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Aukrust P, Halvorsen B, Ueland T, Michelsen AE, Skjelland M, Gullestad L, Yndestad A, Otterdal K. Activated platelets and atherosclerosis. Expert Rev Cardiovasc Ther 2010; 8:1297-307. [PMID: 20828352 DOI: 10.1586/erc.10.92] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several studies suggest an important role for platelets in atherogenesis, not only as mediators of thrombus formation, but also as inducers of inflammation. Several lines of evidence indicate that platelets are potent inflammatory cells that induce inflammatory responses in adjacent cells such as leukocytes and endothelial cells. Platelets may also themselves respond to inflammatory mediators produced by these neighboring cells. These platelet-mediated inflammatory pathways contribute to atherogenesis in both the early and late stage of the process. The bidirectional interaction between platelets and other cells may also be involved in the nonresolving inflammation characterizing atherosclerosis. In patients with atherosclerotic disorders, platelet-mediated inflammation appears to be operating in spite of the wide use of platelet-inhibiting drugs. This underscores the need for new therapeutic tools that more specifically target the pathways in platelet-mediated inflammation.
Collapse
Affiliation(s)
- Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, N-0027 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Brochériou I, Maouche S, Durand H, Braunersreuther V, Le Naour G, Gratchev A, Koskas F, Mach F, Kzhyshkowska J, Ninio E. Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: implication in atherosclerosis. Atherosclerosis 2010; 214:316-24. [PMID: 21159337 DOI: 10.1016/j.atherosclerosis.2010.11.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/05/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVES We characterized the transcriptional profiles of GM-CSF- (GM-MØ) and M-CSF-induced macrophages (M-MØ) and investigated in situ a subset of differentially expressed genes in human and mouse atherosclerotic lesions. METHODS AND RESULTS Using microarrays we identified a number of genes and biological processes differentially regulated in M-MØ vs GM-MØ. By varying in culture the M-CSF/GM-CSF ratio (0-10), a spectrum of macrophage phenotypes was explored by RT-QPCR. M-CSF (10 ng/ml) stimulated expression of several genes, including selenoprotein-1 (SEPP1), stabilin-1 (STAB1) and CD163 molecule-like-1 (CD163L1) which was inhibited by a low dose of GM-CSF (1 ng/ml); M-CSF inhibited the expression of pro-platelet basic protein (PPBP) induced by GM-CSF. Combining tissue microarrays/quantitative immunohistochemistry of human aortic lesions with RT-QPCR expression data either from human carotids vs mammary non-atherosclerotic arteries or from the apoE null mice normal and atherosclerotic aortas showed that, STAB1, SEPP1 and CD163L1 (M-CSF-sensitive genes) and PPBP (GM-CSF-sensitive gene) were expressed in both human arterial and apoE null mice atherosclerotic tissues. CONCLUSION A balance between M-CSF vs GM-CSF defines macrophage functional polarisation and may contribute to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Isabelle Brochériou
- INSERM UMRS937, Université Pierre et Marie Curie UPMC-Paris 6, Faculté de Médecine Pierre et Marie Curie, 91 Boulevard de l'Hôpital, 75634 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmia found in clinical practice. The majority of patients with AF are still candidates for antiarrhythmic drug treatment, not only for acute reversion to sinus rhythm but also for long-term treatment to prevent recurrences of AF. Currently available antiarrhythmic drugs, however, are unable to provide complete efficacy in all patients, and present problematic risks of proarrhythmia. The progressively increasing prevalence of AF supports the need to develop improved therapeutic approaches for the clinical management of arrhythmia. Accordingly, new treatment techniques aimed at suppressing the origin of the arrhythmogenic foci have been developed in the last decade. However, ablative treatments are only available for selected patients. Because of these factors, and also because primary prevention of AF should be our goal, the introduction of non-antiarrhythmic agents that could prevent both new-onset AF and recurrences of AF may eventually improve patient outcomes and reduce the incidence of this epidemic disease. The potential clinical value of these non-antiarrhythmic options is currently under active investigation. There is now clinical and experimental evidence that many drugs may have beneficial effects in preventing AF through several possible mechanisms. Non-antiarrhythmic drugs, such as ACE inhibitors and angiotensin receptor blockers, HMG-CoA reductase inhibitors (statins), corticosteroids, and N-3 polyunsaturated fatty acids may have a positive effect in patients with AF or in preventing AF in patients at risk.
Collapse
Affiliation(s)
- Concepción Moro
- Department of Medicine, University of Alcala, Ramón y Cajal Hospital, Madrid, Spain.
| | | | | |
Collapse
|
28
|
Zografos T, Haliassos A, Korovesis S, Giazitzoglou E, Voridis E, Katritsis D. Association of neutrophil gelatinase-associated lipocalin with the severity of coronary artery disease. Am J Cardiol 2009; 104:917-20. [PMID: 19766756 DOI: 10.1016/j.amjcard.2009.05.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/10/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
Serum neutrophil gelatinase-associated lipocalin (NGAL) concentrations were measured in 73 consecutive patients who underwent first-time angiography for suspected coronary artery disease (CAD), and their associations with angiographic indexes of the severity of CAD (i.e., number of diseased vessels and modified Gensini score) were estimated. Median serum NGAL levels in patients with angiographically confirmed CAD were significantly higher than those in patients with normal coronary arteries (29.0 ng/ml [interquartile range 25.2 to 36.8] vs 22.4 ng/ml [interquartile range 17.34 to 32.0], p = 0.004). Statistically significant correlations were observed between serum NGAL level and the number of diseased vessels (r(s) = 0.390, p = 0.01) and modified Gensini score (r(s) = 0.356, p = 0.002). Using multivariate analysis, serum NGAL level was independently associated with the presence and severity of CAD. In conclusion, serum NGAL levels are significantly higher in the presence of CAD and are correlated with the severity of the disease. Further clinical studies are needed to confirm the use of NGAL as a biomarker for the detection and extent of CAD.
Collapse
|
29
|
Halvorsen B, Otterdal K, Dahl TB, Skjelland M, Gullestad L, Øie E, Aukrust P. Atherosclerotic plaque stability--what determines the fate of a plaque? Prog Cardiovasc Dis 2008; 51:183-94. [PMID: 19026853 DOI: 10.1016/j.pcad.2008.09.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the understanding of the underlying pathology of atherosclerosis has improved in recent years, the disease is still the main cause of death globally. Current evidence has implicated the role of inflammation in atherogenesis and plaque destabilization. Thus, inflammatory cytokines may attenuate interstitial collagen synthesis, increase matrix degradation, and promote apoptosis in several atheroma-associated cell types, and all these cellular events may enhance plaque vulnerability. Several cell types found within the lesion (ie, monocyte/macrophages, T cells, mast cells, platelets) contribute to this immune-mediated plaque destabilization, and a better understanding of these processes is a prerequisite for the development of new treatment strategies in these individuals. Such knowledge could also facilitate a better identification of high-risk individuals. In the present study, these issues will be discussed in more detail, particularly focusing on the interactions between matrix degradation, apoptotic, and inflammatory processes in plaque destabilization.
Collapse
Affiliation(s)
- Bente Halvorsen
- Research Institute for Internal Medicine, Department of Neurology, Rikshospitalet Medical Center, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW To discuss crucial cues (chemokines, adhesion molecules and pharmacological means) that guide and control the context-specific mobilization, recruitment and fate of circulating progenitor cells in arterial repair and plaque stability. RECENT FINDINGS The mobilization and recruitment of bone marrow derived or resident progenitor cells giving rise to smooth muscle cells have been implicated in accelerated forms of primary plaque formation and neointimal hyperplasia after arterial injury. By contrast, convincing evidence has emerged that the arterial homing of endothelial progenitor cells contributes to endothelial recovery and thereby limits neointimal growth after endothelial denudation. In the chronic context of primary atherosclerosis, plaque progression and destabilization, a more complex picture has become apparent. Clinically, the number and function of endothelial progenitor cells have been linked with an improved endothelial function or regeneration and have been frequently inversely correlated with cardiovascular risk (factors). In animal models, however, the injection of bone marrow cells or endothelial progenitor cells, as well as the application of stem-cell mobilizing factors, have been associated with an exacerbation of atherosclerosis and unstable plaque phenotype, whereas the contribution of smooth muscle progenitors to primary atherosclerosis appears to be more confined to supporting plaque stability. SUMMARY Considering the balance between distinct circulating vascular progenitor cells and identifying mechanisms for selective control of their mobilization and homing appears crucial to improve prediction and to directly modulate endogenous vascular remodeling processes.
Collapse
Affiliation(s)
- Mihail Hristov
- Institut für Molekulare Herz-Kreislaufforschung (IMCAR), Universitätsklinikum der RWTH, Aachen, Germany
| | | |
Collapse
|
31
|
Zineh I, Beitelshees AL, Welder GJ, Hou W, Chegini N, Wu J, Cresci S, Province MA, Spertus JA. Epithelial neutrophil-activating peptide (ENA-78), acute coronary syndrome prognosis, and modulatory effect of statins. PLoS One 2008; 3:e3117. [PMID: 18769620 PMCID: PMC2518836 DOI: 10.1371/journal.pone.0003117] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/11/2008] [Indexed: 11/26/2022] Open
Abstract
Endothelial inflammation with chemokine involvement contributes to acute coronary syndromes (ACS). We tested the hypothesis that variation in the chemokine gene CXCL5, which encodes epithelial neutrophil-activating peptide (ENA-78), is associated with ACS prognosis. We also investigated whether statin use, a potent modulator of inflammation, modifies CXCL5's association with outcomes and characterized the in vitro effect of atorvastatin on endothelial ENA-78 production. Using a prospective cohort of ACS patients (n = 704) the association of the CXCL5 −156 G>C polymorphism (rs352046) with 3-year all-cause mortality was estimated with hazard ratios (HR). Models were stratified by genotype and race. To characterize the influence of statins on this association, a statin*genotype interaction was tested. To validate ENA-78 as a statin target in inflammation typical of ACS, endothelial cells (HUVECs) were treated with IL-1β and atorvastatin with subsequent quantification of CXCL5 expression and ENA-78 protein concentrations. C/C genotype was associated with a 2.7-fold increase in 3-year all-cause mortality compared to G/G+G/C (95%CI 1.19–5.87; p = 0.017). Statins significantly reduced mortality in G/G individuals only (58% relative risk reduction; p = 0.0009). In HUVECs, atorvastatin dose-dependently decreased IL-1β-stimulated ENA-78 concentrations (p<0.0001). Drug effects persisted over 48 hours (p<0.01). CXCL5 genotype is associated with outcomes after ACS with potential statin modification of this effect. Atorvastatin lowered endothelial ENA-78 production during inflammation typical of ACS. These findings implicate CXCL5/ENA-78 in ACS and the statin response.
Collapse
Affiliation(s)
- Issam Zineh
- Center for Pharmacogenomics and Department of Pharmacy Practice, University of Florida College of Pharmacy, Gainesville, Florida, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Turner SJ, Ketch TR, Gandhi SK, Sane DC. Routine hematologic clinical tests as prognostic markers in patients with acute coronary syndromes. Am Heart J 2008; 155:806-16. [PMID: 18440326 DOI: 10.1016/j.ahj.2007.11.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 11/30/2007] [Indexed: 12/19/2022]
Abstract
Prognostic markers are needed to identify patients with acute coronary syndrome (ACS) who are at high risk for adverse events. Although the search for new biomarkers is quite active, prognostic information is available from routine hematologic tests, such as the complete blood count. For example, elevated white blood cell counts during ACS are associated with increased risk of mortality, heart failure, shock, and left ventricular dysfunction. Anemia is associated with increased risk of mortality, whereas elevated platelet counts predict poorer clinical and angiographic outcomes. In this review, we summarize the literature regarding the use of clinical hematology tests including white blood cell count, hemoglobin and hematocrit values, and platelet count as prognostic markers in patients with ACS, and we describe potential mechanisms to explain these associations.
Collapse
|
33
|
Abstract
Platelets and lymphocytes reciprocally regulate mutual functions, i.e., platelet-lymphocyte cross-talk. The heterotypic interactions have emerged as important regulatory mechanisms in the pathophysiological processes of thrombosis, inflammation, immunity, and atherosclerosis. Platelets influence lymphocyte function via direct cell-cell contact and/or soluble mediators. Hence, platelets enhance adhesion and cell migration of T(H), T cytolytic (T(C)), NK, and B cells. Platelets affect other functional aspects of lymphocyte subpopulations in a complex manner. They may attenuate cytokine secretion and immunosuppressive responses of T(H) cells and enhance T(C) cell proliferation and cytotoxicity. Platelets promote isotype shifting and antibody production of B cells but ameliorate cytolytic activity of NK cells. On the other hand, lymphocytes can also regulate platelet aggregation and secretion, as well as the effector cell function of platelets in immune defense. The two cell types collaborate in transcellular phospholipid metabolism, CD40-CD40 ligand-mediated intercellular signaling, and their involvements in atherogenesis. The research perspectives of platelet-lymphocyte cross-talk have also been addressed.
Collapse
Affiliation(s)
- Nailin Li
- Clinical Pharmacology Unit, Karolinska University Hospital (Solna), SE-171 76 Stockholm, Sweden.
| |
Collapse
|